Metamath Proof Explorer


Theorem sincos6thpi

Description: The sine and cosine of _pi / 6 . (Contributed by Paul Chapman, 25-Jan-2008) (Revised by Wolf Lammen, 24-Sep-2020)

Ref Expression
Assertion sincos6thpi sin π 6 = 1 2 cos π 6 = 3 2

Proof

Step Hyp Ref Expression
1 2cn 2
2 pire π
3 6re 6
4 6pos 0 < 6
5 3 4 gt0ne0ii 6 0
6 2 3 5 redivcli π 6
7 6 recni π 6
8 sincl π 6 sin π 6
9 7 8 ax-mp sin π 6
10 2ne0 2 0
11 recoscl π 6 cos π 6
12 6 11 ax-mp cos π 6
13 12 recni cos π 6
14 1 9 13 mulassi 2 sin π 6 cos π 6 = 2 sin π 6 cos π 6
15 sin2t π 6 sin 2 π 6 = 2 sin π 6 cos π 6
16 7 15 ax-mp sin 2 π 6 = 2 sin π 6 cos π 6
17 14 16 eqtr4i 2 sin π 6 cos π 6 = sin 2 π 6
18 3cn 3
19 3ne0 3 0
20 1 18 19 divcli 2 3
21 18 19 reccli 1 3
22 df-3 3 = 2 + 1
23 22 oveq1i 3 3 = 2 + 1 3
24 18 19 dividi 3 3 = 1
25 ax-1cn 1
26 1 25 18 19 divdiri 2 + 1 3 = 2 3 + 1 3
27 23 24 26 3eqtr3ri 2 3 + 1 3 = 1
28 sincosq1eq 2 3 1 3 2 3 + 1 3 = 1 sin 2 3 π 2 = cos 1 3 π 2
29 20 21 27 28 mp3an sin 2 3 π 2 = cos 1 3 π 2
30 picn π
31 1 18 30 1 19 10 divmuldivi 2 3 π 2 = 2 π 3 2
32 3t2e6 3 2 = 6
33 32 oveq2i 2 π 3 2 = 2 π 6
34 6cn 6
35 1 30 34 5 divassi 2 π 6 = 2 π 6
36 31 33 35 3eqtri 2 3 π 2 = 2 π 6
37 36 fveq2i sin 2 3 π 2 = sin 2 π 6
38 29 37 eqtr3i cos 1 3 π 2 = sin 2 π 6
39 25 18 30 1 19 10 divmuldivi 1 3 π 2 = 1 π 3 2
40 30 mulid2i 1 π = π
41 40 32 oveq12i 1 π 3 2 = π 6
42 39 41 eqtri 1 3 π 2 = π 6
43 42 fveq2i cos 1 3 π 2 = cos π 6
44 38 43 eqtr3i sin 2 π 6 = cos π 6
45 17 44 eqtri 2 sin π 6 cos π 6 = cos π 6
46 13 mulid2i 1 cos π 6 = cos π 6
47 45 46 eqtr4i 2 sin π 6 cos π 6 = 1 cos π 6
48 1 9 mulcli 2 sin π 6
49 pipos 0 < π
50 2 3 49 4 divgt0ii 0 < π 6
51 2lt6 2 < 6
52 2re 2
53 2pos 0 < 2
54 52 53 pm3.2i 2 0 < 2
55 3 4 pm3.2i 6 0 < 6
56 2 49 pm3.2i π 0 < π
57 ltdiv2 2 0 < 2 6 0 < 6 π 0 < π 2 < 6 π 6 < π 2
58 54 55 56 57 mp3an 2 < 6 π 6 < π 2
59 51 58 mpbi π 6 < π 2
60 0re 0
61 halfpire π 2
62 rexr 0 0 *
63 rexr π 2 π 2 *
64 elioo2 0 * π 2 * π 6 0 π 2 π 6 0 < π 6 π 6 < π 2
65 62 63 64 syl2an 0 π 2 π 6 0 π 2 π 6 0 < π 6 π 6 < π 2
66 60 61 65 mp2an π 6 0 π 2 π 6 0 < π 6 π 6 < π 2
67 6 50 59 66 mpbir3an π 6 0 π 2
68 sincosq1sgn π 6 0 π 2 0 < sin π 6 0 < cos π 6
69 67 68 ax-mp 0 < sin π 6 0 < cos π 6
70 69 simpri 0 < cos π 6
71 12 70 gt0ne0ii cos π 6 0
72 13 71 pm3.2i cos π 6 cos π 6 0
73 mulcan2 2 sin π 6 1 cos π 6 cos π 6 0 2 sin π 6 cos π 6 = 1 cos π 6 2 sin π 6 = 1
74 48 25 72 73 mp3an 2 sin π 6 cos π 6 = 1 cos π 6 2 sin π 6 = 1
75 47 74 mpbi 2 sin π 6 = 1
76 1 9 10 75 mvllmuli sin π 6 = 1 2
77 3re 3
78 3pos 0 < 3
79 77 78 sqrtpclii 3
80 79 recni 3
81 80 1 10 sqdivi 3 2 2 = 3 2 2 2
82 60 77 78 ltleii 0 3
83 77 sqsqrti 0 3 3 2 = 3
84 82 83 ax-mp 3 2 = 3
85 sq2 2 2 = 4
86 84 85 oveq12i 3 2 2 2 = 3 4
87 81 86 eqtri 3 2 2 = 3 4
88 87 fveq2i 3 2 2 = 3 4
89 77 sqrtge0i 0 3 0 3
90 82 89 ax-mp 0 3
91 79 52 divge0i 0 3 0 < 2 0 3 2
92 90 53 91 mp2an 0 3 2
93 79 52 10 redivcli 3 2
94 93 sqrtsqi 0 3 2 3 2 2 = 3 2
95 92 94 ax-mp 3 2 2 = 3 2
96 4cn 4
97 4ne0 4 0
98 96 97 dividi 4 4 = 1
99 98 oveq1i 4 4 1 4 = 1 1 4
100 96 97 pm3.2i 4 4 0
101 divsubdir 4 1 4 4 0 4 1 4 = 4 4 1 4
102 96 25 100 101 mp3an 4 1 4 = 4 4 1 4
103 4m1e3 4 1 = 3
104 103 oveq1i 4 1 4 = 3 4
105 102 104 eqtr3i 4 4 1 4 = 3 4
106 96 97 reccli 1 4
107 13 sqcli cos π 6 2
108 76 oveq1i sin π 6 2 = 1 2 2
109 1 10 sqrecii 1 2 2 = 1 2 2
110 85 oveq2i 1 2 2 = 1 4
111 108 109 110 3eqtri sin π 6 2 = 1 4
112 111 oveq1i sin π 6 2 + cos π 6 2 = 1 4 + cos π 6 2
113 sincossq π 6 sin π 6 2 + cos π 6 2 = 1
114 7 113 ax-mp sin π 6 2 + cos π 6 2 = 1
115 112 114 eqtr3i 1 4 + cos π 6 2 = 1
116 25 106 107 115 subaddrii 1 1 4 = cos π 6 2
117 99 105 116 3eqtr3ri cos π 6 2 = 3 4
118 117 fveq2i cos π 6 2 = 3 4
119 60 12 70 ltleii 0 cos π 6
120 12 sqrtsqi 0 cos π 6 cos π 6 2 = cos π 6
121 119 120 ax-mp cos π 6 2 = cos π 6
122 118 121 eqtr3i 3 4 = cos π 6
123 88 95 122 3eqtr3ri cos π 6 = 3 2
124 76 123 pm3.2i sin π 6 = 1 2 cos π 6 = 3 2