Metamath Proof Explorer


Theorem sincosq1eq

Description: Complementarity of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 25-Jan-2008)

Ref Expression
Assertion sincosq1eq A B A + B = 1 sin A π 2 = cos B π 2

Proof

Step Hyp Ref Expression
1 picn π
2 2cn 2
3 2ne0 2 0
4 1 2 3 divcli π 2
5 mulcl A π 2 A π 2
6 4 5 mpan2 A A π 2
7 coshalfpim A π 2 cos π 2 A π 2 = sin A π 2
8 6 7 syl A cos π 2 A π 2 = sin A π 2
9 8 3ad2ant1 A B A + B = 1 cos π 2 A π 2 = sin A π 2
10 adddir A B π 2 A + B π 2 = A π 2 + B π 2
11 4 10 mp3an3 A B A + B π 2 = A π 2 + B π 2
12 11 3adant3 A B A + B = 1 A + B π 2 = A π 2 + B π 2
13 oveq1 A + B = 1 A + B π 2 = 1 π 2
14 4 mulid2i 1 π 2 = π 2
15 13 14 eqtrdi A + B = 1 A + B π 2 = π 2
16 15 3ad2ant3 A B A + B = 1 A + B π 2 = π 2
17 12 16 eqtr3d A B A + B = 1 A π 2 + B π 2 = π 2
18 mulcl B π 2 B π 2
19 4 18 mpan2 B B π 2
20 subadd π 2 A π 2 B π 2 π 2 A π 2 = B π 2 A π 2 + B π 2 = π 2
21 4 6 19 20 mp3an3an A B π 2 A π 2 = B π 2 A π 2 + B π 2 = π 2
22 21 3adant3 A B A + B = 1 π 2 A π 2 = B π 2 A π 2 + B π 2 = π 2
23 17 22 mpbird A B A + B = 1 π 2 A π 2 = B π 2
24 23 fveq2d A B A + B = 1 cos π 2 A π 2 = cos B π 2
25 9 24 eqtr3d A B A + B = 1 sin A π 2 = cos B π 2