Metamath Proof Explorer


Theorem sincosq1lem

Description: Lemma for sincosq1sgn . (Contributed by Paul Chapman, 24-Jan-2008)

Ref Expression
Assertion sincosq1lem A 0 < A A < π 2 0 < sin A

Proof

Step Hyp Ref Expression
1 halfpire π 2
2 ltle A π 2 A < π 2 A π 2
3 1 2 mpan2 A A < π 2 A π 2
4 pire π
5 4re 4
6 pigt2lt4 2 < π π < 4
7 6 simpri π < 4
8 4 5 7 ltleii π 4
9 2re 2
10 2pos 0 < 2
11 9 10 pm3.2i 2 0 < 2
12 ledivmul π 2 2 0 < 2 π 2 2 π 2 2
13 4 9 11 12 mp3an π 2 2 π 2 2
14 2t2e4 2 2 = 4
15 14 breq2i π 2 2 π 4
16 13 15 bitri π 2 2 π 4
17 8 16 mpbir π 2 2
18 letr A π 2 2 A π 2 π 2 2 A 2
19 1 9 18 mp3an23 A A π 2 π 2 2 A 2
20 17 19 mpan2i A A π 2 A 2
21 3 20 syld A A < π 2 A 2
22 21 adantr A 0 < A A < π 2 A 2
23 22 3impia A 0 < A A < π 2 A 2
24 0xr 0 *
25 elioc2 0 * 2 A 0 2 A 0 < A A 2
26 24 9 25 mp2an A 0 2 A 0 < A A 2
27 sin02gt0 A 0 2 0 < sin A
28 26 27 sylbir A 0 < A A 2 0 < sin A
29 23 28 syld3an3 A 0 < A A < π 2 0 < sin A