Metamath Proof Explorer


Theorem sincosq2sgn

Description: The signs of the sine and cosine functions in the second quadrant. (Contributed by Paul Chapman, 24-Jan-2008)

Ref Expression
Assertion sincosq2sgn A π 2 π 0 < sin A cos A < 0

Proof

Step Hyp Ref Expression
1 halfpire π 2
2 pire π
3 rexr π 2 π 2 *
4 rexr π π *
5 elioo2 π 2 * π * A π 2 π A π 2 < A A < π
6 3 4 5 syl2an π 2 π A π 2 π A π 2 < A A < π
7 1 2 6 mp2an A π 2 π A π 2 < A A < π
8 resubcl A π 2 A π 2
9 1 8 mpan2 A A π 2
10 0xr 0 *
11 1 rexri π 2 *
12 elioo2 0 * π 2 * A π 2 0 π 2 A π 2 0 < A π 2 A π 2 < π 2
13 10 11 12 mp2an A π 2 0 π 2 A π 2 0 < A π 2 A π 2 < π 2
14 sincosq1sgn A π 2 0 π 2 0 < sin A π 2 0 < cos A π 2
15 13 14 sylbir A π 2 0 < A π 2 A π 2 < π 2 0 < sin A π 2 0 < cos A π 2
16 9 15 syl3an1 A 0 < A π 2 A π 2 < π 2 0 < sin A π 2 0 < cos A π 2
17 16 3expib A 0 < A π 2 A π 2 < π 2 0 < sin A π 2 0 < cos A π 2
18 0re 0
19 ltsub13 0 A π 2 0 < A π 2 π 2 < A 0
20 18 1 19 mp3an13 A 0 < A π 2 π 2 < A 0
21 recn A A
22 21 subid1d A A 0 = A
23 22 breq2d A π 2 < A 0 π 2 < A
24 20 23 bitrd A 0 < A π 2 π 2 < A
25 ltsubadd A π 2 π 2 A π 2 < π 2 A < π 2 + π 2
26 1 1 25 mp3an23 A A π 2 < π 2 A < π 2 + π 2
27 pidiv2halves π 2 + π 2 = π
28 27 breq2i A < π 2 + π 2 A < π
29 26 28 bitrdi A A π 2 < π 2 A < π
30 24 29 anbi12d A 0 < A π 2 A π 2 < π 2 π 2 < A A < π
31 9 resincld A sin A π 2
32 31 lt0neg2d A 0 < sin A π 2 sin A π 2 < 0
33 32 anbi1d A 0 < sin A π 2 0 < cos A π 2 sin A π 2 < 0 0 < cos A π 2
34 17 30 33 3imtr3d A π 2 < A A < π sin A π 2 < 0 0 < cos A π 2
35 1 recni π 2
36 pncan3 π 2 A π 2 + A - π 2 = A
37 35 21 36 sylancr A π 2 + A - π 2 = A
38 37 fveq2d A cos π 2 + A - π 2 = cos A
39 9 recnd A A π 2
40 coshalfpip A π 2 cos π 2 + A - π 2 = sin A π 2
41 39 40 syl A cos π 2 + A - π 2 = sin A π 2
42 38 41 eqtr3d A cos A = sin A π 2
43 42 breq1d A cos A < 0 sin A π 2 < 0
44 37 fveq2d A sin π 2 + A - π 2 = sin A
45 sinhalfpip A π 2 sin π 2 + A - π 2 = cos A π 2
46 39 45 syl A sin π 2 + A - π 2 = cos A π 2
47 44 46 eqtr3d A sin A = cos A π 2
48 47 breq2d A 0 < sin A 0 < cos A π 2
49 43 48 anbi12d A cos A < 0 0 < sin A sin A π 2 < 0 0 < cos A π 2
50 34 49 sylibrd A π 2 < A A < π cos A < 0 0 < sin A
51 50 3impib A π 2 < A A < π cos A < 0 0 < sin A
52 51 ancomd A π 2 < A A < π 0 < sin A cos A < 0
53 7 52 sylbi A π 2 π 0 < sin A cos A < 0