Metamath Proof Explorer


Theorem sineq0

Description: A complex number whose sine is zero is an integer multiple of _pi . (Contributed by NM, 17-Aug-2008) (Revised by Mario Carneiro, 10-May-2014)

Ref Expression
Assertion sineq0 A sin A = 0 A π

Proof

Step Hyp Ref Expression
1 sinval A sin A = e i A e i A 2 i
2 1 eqeq1d A sin A = 0 e i A e i A 2 i = 0
3 ax-icn i
4 mulcl i A i A
5 3 4 mpan A i A
6 efcl i A e i A
7 5 6 syl A e i A
8 negicn i
9 mulcl i A i A
10 8 9 mpan A i A
11 efcl i A e i A
12 10 11 syl A e i A
13 7 12 subcld A e i A e i A
14 2mulicn 2 i
15 2muline0 2 i 0
16 diveq0 e i A e i A 2 i 2 i 0 e i A e i A 2 i = 0 e i A e i A = 0
17 14 15 16 mp3an23 e i A e i A e i A e i A 2 i = 0 e i A e i A = 0
18 13 17 syl A e i A e i A 2 i = 0 e i A e i A = 0
19 7 12 subeq0ad A e i A e i A = 0 e i A = e i A
20 2 18 19 3bitrd A sin A = 0 e i A = e i A
21 oveq2 e i A = e i A e i A e i A = e i A e i A
22 2cn 2
23 mul12 i 2 A i 2 A = 2 i A
24 3 22 23 mp3an12 A i 2 A = 2 i A
25 5 2timesd A 2 i A = i A + i A
26 24 25 eqtrd A i 2 A = i A + i A
27 26 fveq2d A e i 2 A = e i A + i A
28 efadd i A i A e i A + i A = e i A e i A
29 5 5 28 syl2anc A e i A + i A = e i A e i A
30 27 29 eqtr2d A e i A e i A = e i 2 A
31 efadd i A i A e i A + i A = e i A e i A
32 5 10 31 syl2anc A e i A + i A = e i A e i A
33 3 negidi i + i = 0
34 33 oveq1i i + i A = 0 A
35 adddir i i A i + i A = i A + i A
36 3 8 35 mp3an12 A i + i A = i A + i A
37 mul02 A 0 A = 0
38 34 36 37 3eqtr3a A i A + i A = 0
39 38 fveq2d A e i A + i A = e 0
40 ef0 e 0 = 1
41 39 40 eqtrdi A e i A + i A = 1
42 32 41 eqtr3d A e i A e i A = 1
43 30 42 eqeq12d A e i A e i A = e i A e i A e i 2 A = 1
44 fveq2 e i 2 A = 1 e i 2 A = 1
45 43 44 syl6bi A e i A e i A = e i A e i A e i 2 A = 1
46 21 45 syl5 A e i A = e i A e i 2 A = 1
47 20 46 sylbid A sin A = 0 e i 2 A = 1
48 abs1 1 = 1
49 48 eqeq2i e i 2 A = 1 e i 2 A = 1
50 2re 2
51 2ne0 2 0
52 mulre A 2 2 0 A 2 A
53 50 51 52 mp3an23 A A 2 A
54 mulcl 2 A 2 A
55 22 54 mpan A 2 A
56 absefib 2 A 2 A e i 2 A = 1
57 55 56 syl A 2 A e i 2 A = 1
58 53 57 bitr2d A e i 2 A = 1 A
59 49 58 syl5bb A e i 2 A = 1 A
60 47 59 sylibd A sin A = 0 A
61 60 imp A sin A = 0 A
62 pirp π +
63 modval A π + A mod π = A π A π
64 61 62 63 sylancl A sin A = 0 A mod π = A π A π
65 picn π
66 pire π
67 pipos 0 < π
68 66 67 gt0ne0ii π 0
69 redivcl A π π 0 A π
70 66 68 69 mp3an23 A A π
71 61 70 syl A sin A = 0 A π
72 71 flcld A sin A = 0 A π
73 72 zcnd A sin A = 0 A π
74 mulcl π A π π A π
75 65 73 74 sylancr A sin A = 0 π A π
76 negsub A π A π A + π A π = A π A π
77 75 76 syldan A sin A = 0 A + π A π = A π A π
78 mulcom π A π π A π = A π π
79 65 73 78 sylancr A sin A = 0 π A π = A π π
80 79 negeqd A sin A = 0 π A π = A π π
81 mulneg1 A π π A π π = A π π
82 73 65 81 sylancl A sin A = 0 A π π = A π π
83 80 82 eqtr4d A sin A = 0 π A π = A π π
84 83 oveq2d A sin A = 0 A + π A π = A + A π π
85 64 77 84 3eqtr2d A sin A = 0 A mod π = A + A π π
86 85 fveq2d A sin A = 0 sin A mod π = sin A + A π π
87 86 fveq2d A sin A = 0 sin A mod π = sin A + A π π
88 72 znegcld A sin A = 0 A π
89 abssinper A A π sin A + A π π = sin A
90 88 89 syldan A sin A = 0 sin A + A π π = sin A
91 simpr A sin A = 0 sin A = 0
92 91 fveq2d A sin A = 0 sin A = 0
93 87 90 92 3eqtrd A sin A = 0 sin A mod π = 0
94 abs0 0 = 0
95 93 94 eqtrdi A sin A = 0 sin A mod π = 0
96 modcl A π + A mod π
97 61 62 96 sylancl A sin A = 0 A mod π
98 modlt A π + A mod π < π
99 61 62 98 sylancl A sin A = 0 A mod π < π
100 97 99 jca A sin A = 0 A mod π A mod π < π
101 100 biantrurd A sin A = 0 0 < A mod π A mod π A mod π < π 0 < A mod π
102 0re 0
103 rexr 0 0 *
104 rexr π π *
105 elioo2 0 * π * A mod π 0 π A mod π 0 < A mod π A mod π < π
106 103 104 105 syl2an 0 π A mod π 0 π A mod π 0 < A mod π A mod π < π
107 102 66 106 mp2an A mod π 0 π A mod π 0 < A mod π A mod π < π
108 3anan32 A mod π 0 < A mod π A mod π < π A mod π A mod π < π 0 < A mod π
109 107 108 bitri A mod π 0 π A mod π A mod π < π 0 < A mod π
110 101 109 bitr4di A sin A = 0 0 < A mod π A mod π 0 π
111 sinq12gt0 A mod π 0 π 0 < sin A mod π
112 elioore A mod π 0 π A mod π
113 112 resincld A mod π 0 π sin A mod π
114 ltle 0 sin A mod π 0 < sin A mod π 0 sin A mod π
115 102 113 114 sylancr A mod π 0 π 0 < sin A mod π 0 sin A mod π
116 111 115 mpd A mod π 0 π 0 sin A mod π
117 113 116 absidd A mod π 0 π sin A mod π = sin A mod π
118 111 117 breqtrrd A mod π 0 π 0 < sin A mod π
119 110 118 syl6bi A sin A = 0 0 < A mod π 0 < sin A mod π
120 ltne 0 0 < sin A mod π sin A mod π 0
121 102 120 mpan 0 < sin A mod π sin A mod π 0
122 119 121 syl6 A sin A = 0 0 < A mod π sin A mod π 0
123 122 necon2bd A sin A = 0 sin A mod π = 0 ¬ 0 < A mod π
124 95 123 mpd A sin A = 0 ¬ 0 < A mod π
125 modge0 A π + 0 A mod π
126 61 62 125 sylancl A sin A = 0 0 A mod π
127 leloe 0 A mod π 0 A mod π 0 < A mod π 0 = A mod π
128 102 97 127 sylancr A sin A = 0 0 A mod π 0 < A mod π 0 = A mod π
129 126 128 mpbid A sin A = 0 0 < A mod π 0 = A mod π
130 129 ord A sin A = 0 ¬ 0 < A mod π 0 = A mod π
131 124 130 mpd A sin A = 0 0 = A mod π
132 131 eqcomd A sin A = 0 A mod π = 0
133 mod0 A π + A mod π = 0 A π
134 61 62 133 sylancl A sin A = 0 A mod π = 0 A π
135 132 134 mpbid A sin A = 0 A π
136 divcan1 A π π 0 A π π = A
137 65 68 136 mp3an23 A A π π = A
138 137 fveq2d A sin A π π = sin A
139 sinkpi A π sin A π π = 0
140 138 139 sylan9req A A π sin A = 0
141 135 140 impbida A sin A = 0 A π