Metamath Proof Explorer


Theorem sinf

Description: Domain and codomain of the sine function. (Contributed by Paul Chapman, 22-Oct-2007) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Assertion sinf sin :

Proof

Step Hyp Ref Expression
1 df-sin sin = x e i x e i x 2 i
2 ax-icn i
3 mulcl i x i x
4 2 3 mpan x i x
5 efcl i x e i x
6 4 5 syl x e i x
7 negicn i
8 mulcl i x i x
9 7 8 mpan x i x
10 efcl i x e i x
11 9 10 syl x e i x
12 6 11 subcld x e i x e i x
13 2mulicn 2 i
14 2muline0 2 i 0
15 divcl e i x e i x 2 i 2 i 0 e i x e i x 2 i
16 13 14 15 mp3an23 e i x e i x e i x e i x 2 i
17 12 16 syl x e i x e i x 2 i
18 1 17 fmpti sin :