Metamath Proof Explorer


Theorem sinltx

Description: The sine of a positive real number is less than its argument. (Contributed by Mario Carneiro, 29-Jul-2014)

Ref Expression
Assertion sinltx A + sin A < A

Proof

Step Hyp Ref Expression
1 rpre A + A
2 1 adantr A + 1 < A A
3 2 resincld A + 1 < A sin A
4 1red A + 1 < A 1
5 sinbnd A 1 sin A sin A 1
6 5 simprd A sin A 1
7 1 6 syl A + sin A 1
8 7 adantr A + 1 < A sin A 1
9 simpr A + 1 < A 1 < A
10 3 4 2 8 9 lelttrd A + 1 < A sin A < A
11 df-3an A 0 < A A 1 A 0 < A A 1
12 0xr 0 *
13 1re 1
14 elioc2 0 * 1 A 0 1 A 0 < A A 1
15 12 13 14 mp2an A 0 1 A 0 < A A 1
16 elrp A + A 0 < A
17 16 anbi1i A + A 1 A 0 < A A 1
18 11 15 17 3bitr4i A 0 1 A + A 1
19 sin01bnd A 0 1 A A 3 3 < sin A sin A < A
20 19 simprd A 0 1 sin A < A
21 18 20 sylbir A + A 1 sin A < A
22 1red A + 1
23 10 21 22 1 ltlecasei A + sin A < A