Metamath Proof Explorer


Theorem sinmulcos

Description: Multiplication formula for sine and cosine. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion sinmulcos A B sin A cos B = sin A + B + sin A B 2

Proof

Step Hyp Ref Expression
1 simpl A B A
2 1 sincld A B sin A
3 cosf cos :
4 3 a1i A cos :
5 4 ffvelrnda A B cos B
6 2 5 mulcld A B sin A cos B
7 1 coscld A B cos A
8 sinf sin :
9 8 a1i A sin :
10 9 ffvelrnda A B sin B
11 7 10 mulcld A B cos A sin B
12 6 11 6 ppncand A B sin A cos B + cos A sin B + sin A cos B cos A sin B = sin A cos B + sin A cos B
13 sinadd A B sin A + B = sin A cos B + cos A sin B
14 sinsub A B sin A B = sin A cos B cos A sin B
15 13 14 oveq12d A B sin A + B + sin A B = sin A cos B + cos A sin B + sin A cos B cos A sin B
16 6 2timesd A B 2 sin A cos B = sin A cos B + sin A cos B
17 12 15 16 3eqtr4d A B sin A + B + sin A B = 2 sin A cos B
18 17 oveq1d A B sin A + B + sin A B 2 = 2 sin A cos B 2
19 2cnd A B 2
20 2ne0 2 0
21 20 a1i A B 2 0
22 6 19 21 divcan3d A B 2 sin A cos B 2 = sin A cos B
23 18 22 eqtr2d A B sin A cos B = sin A + B + sin A B 2