Metamath Proof Explorer


Theorem sinord

Description: Sine is increasing over the closed interval from -u (pi / 2 ) to ( pi / 2 ) . (Contributed by Mario Carneiro, 29-Jul-2014)

Ref Expression
Assertion sinord A π 2 π 2 B π 2 π 2 A < B sin A < sin B

Proof

Step Hyp Ref Expression
1 neghalfpire π 2
2 halfpire π 2
3 iccssre π 2 π 2 π 2 π 2
4 1 2 3 mp2an π 2 π 2
5 4 sseli A π 2 π 2 A
6 4 sseli B π 2 π 2 B
7 ltsub2 A B π 2 A < B π 2 B < π 2 A
8 2 7 mp3an3 A B A < B π 2 B < π 2 A
9 5 6 8 syl2an A π 2 π 2 B π 2 π 2 A < B π 2 B < π 2 A
10 oveq2 x = B π 2 x = π 2 B
11 10 eleq1d x = B π 2 x 0 π π 2 B 0 π
12 4 sseli x π 2 π 2 x
13 resubcl π 2 x π 2 x
14 2 12 13 sylancr x π 2 π 2 π 2 x
15 1 2 elicc2i x π 2 π 2 x π 2 x x π 2
16 15 simp3bi x π 2 π 2 x π 2
17 subge0 π 2 x 0 π 2 x x π 2
18 2 12 17 sylancr x π 2 π 2 0 π 2 x x π 2
19 16 18 mpbird x π 2 π 2 0 π 2 x
20 15 simp2bi x π 2 π 2 π 2 x
21 lesub2 π 2 x π 2 π 2 x π 2 x π 2 π 2
22 1 2 21 mp3an13 x π 2 x π 2 x π 2 π 2
23 12 22 syl x π 2 π 2 π 2 x π 2 x π 2 π 2
24 20 23 mpbid x π 2 π 2 π 2 x π 2 π 2
25 2 recni π 2
26 25 25 subnegi π 2 π 2 = π 2 + π 2
27 pidiv2halves π 2 + π 2 = π
28 26 27 eqtri π 2 π 2 = π
29 24 28 breqtrdi x π 2 π 2 π 2 x π
30 0re 0
31 pire π
32 30 31 elicc2i π 2 x 0 π π 2 x 0 π 2 x π 2 x π
33 14 19 29 32 syl3anbrc x π 2 π 2 π 2 x 0 π
34 11 33 vtoclga B π 2 π 2 π 2 B 0 π
35 oveq2 x = A π 2 x = π 2 A
36 35 eleq1d x = A π 2 x 0 π π 2 A 0 π
37 36 33 vtoclga A π 2 π 2 π 2 A 0 π
38 cosord π 2 B 0 π π 2 A 0 π π 2 B < π 2 A cos π 2 A < cos π 2 B
39 34 37 38 syl2anr A π 2 π 2 B π 2 π 2 π 2 B < π 2 A cos π 2 A < cos π 2 B
40 5 recnd A π 2 π 2 A
41 coshalfpim A cos π 2 A = sin A
42 40 41 syl A π 2 π 2 cos π 2 A = sin A
43 6 recnd B π 2 π 2 B
44 coshalfpim B cos π 2 B = sin B
45 43 44 syl B π 2 π 2 cos π 2 B = sin B
46 42 45 breqan12d A π 2 π 2 B π 2 π 2 cos π 2 A < cos π 2 B sin A < sin B
47 9 39 46 3bitrd A π 2 π 2 B π 2 π 2 A < B sin A < sin B