Metamath Proof Explorer


Theorem sinper

Description: The sine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008) (Revised by Mario Carneiro, 10-May-2014)

Ref Expression
Assertion sinper A K sin A + K 2 π = sin A

Proof

Step Hyp Ref Expression
1 sinval A sin A = e i A e i A 2 i
2 sinval A + K 2 π sin A + K 2 π = e i A + K 2 π e i A + K 2 π 2 i
3 1 2 sinperlem A K sin A + K 2 π = sin A