Metamath Proof Explorer


Theorem sinperlem

Description: Lemma for sinper and cosper . (Contributed by Paul Chapman, 23-Jan-2008) (Revised by Mario Carneiro, 10-May-2014)

Ref Expression
Hypotheses sinperlem.1 A F A = e i A O e i A D
sinperlem.2 A + K 2 π F A + K 2 π = e i A + K 2 π O e i A + K 2 π D
Assertion sinperlem A K F A + K 2 π = F A

Proof

Step Hyp Ref Expression
1 sinperlem.1 A F A = e i A O e i A D
2 sinperlem.2 A + K 2 π F A + K 2 π = e i A + K 2 π O e i A + K 2 π D
3 zcn K K
4 2cn 2
5 picn π
6 4 5 mulcli 2 π
7 mulcl K 2 π K 2 π
8 3 6 7 sylancl K K 2 π
9 ax-icn i
10 adddi i A K 2 π i A + K 2 π = i A + i K 2 π
11 9 10 mp3an1 A K 2 π i A + K 2 π = i A + i K 2 π
12 8 11 sylan2 A K i A + K 2 π = i A + i K 2 π
13 mul12 i K 2 π i K 2 π = K i 2 π
14 9 6 13 mp3an13 K i K 2 π = K i 2 π
15 3 14 syl K i K 2 π = K i 2 π
16 9 6 mulcli i 2 π
17 mulcom K i 2 π K i 2 π = i 2 π K
18 3 16 17 sylancl K K i 2 π = i 2 π K
19 15 18 eqtrd K i K 2 π = i 2 π K
20 19 adantl A K i K 2 π = i 2 π K
21 20 oveq2d A K i A + i K 2 π = i A + i 2 π K
22 12 21 eqtrd A K i A + K 2 π = i A + i 2 π K
23 22 fveq2d A K e i A + K 2 π = e i A + i 2 π K
24 mulcl i A i A
25 9 24 mpan A i A
26 efper i A K e i A + i 2 π K = e i A
27 25 26 sylan A K e i A + i 2 π K = e i A
28 23 27 eqtrd A K e i A + K 2 π = e i A
29 negicn i
30 adddi i A K 2 π i A + K 2 π = i A + i K 2 π
31 29 30 mp3an1 A K 2 π i A + K 2 π = i A + i K 2 π
32 8 31 sylan2 A K i A + K 2 π = i A + i K 2 π
33 19 negeqd K i K 2 π = i 2 π K
34 mulneg1 i K 2 π i K 2 π = i K 2 π
35 9 8 34 sylancr K i K 2 π = i K 2 π
36 mulneg2 i 2 π K i 2 π K = i 2 π K
37 16 3 36 sylancr K i 2 π K = i 2 π K
38 33 35 37 3eqtr4d K i K 2 π = i 2 π K
39 38 adantl A K i K 2 π = i 2 π K
40 39 oveq2d A K i A + i K 2 π = i A + i 2 π K
41 32 40 eqtrd A K i A + K 2 π = i A + i 2 π K
42 41 fveq2d A K e i A + K 2 π = e i A + i 2 π K
43 mulcl i A i A
44 29 43 mpan A i A
45 znegcl K K
46 efper i A K e i A + i 2 π K = e i A
47 44 45 46 syl2an A K e i A + i 2 π K = e i A
48 42 47 eqtrd A K e i A + K 2 π = e i A
49 28 48 oveq12d A K e i A + K 2 π O e i A + K 2 π = e i A O e i A
50 49 oveq1d A K e i A + K 2 π O e i A + K 2 π D = e i A O e i A D
51 addcl A K 2 π A + K 2 π
52 8 51 sylan2 A K A + K 2 π
53 52 2 syl A K F A + K 2 π = e i A + K 2 π O e i A + K 2 π D
54 1 adantr A K F A = e i A O e i A D
55 50 53 54 3eqtr4d A K F A + K 2 π = F A