Metamath Proof Explorer


Theorem sinq12ge0

Description: The sine of a number between 0 and _pi is nonnegative. (Contributed by Mario Carneiro, 13-May-2014)

Ref Expression
Assertion sinq12ge0 A 0 π 0 sin A

Proof

Step Hyp Ref Expression
1 0re 0
2 pire π
3 1 2 elicc2i A 0 π A 0 A A π
4 3 simp1bi A 0 π A
5 rexr 0 0 *
6 rexr π π *
7 elioo2 0 * π * A 0 π A 0 < A A < π
8 5 6 7 syl2an 0 π A 0 π A 0 < A A < π
9 1 2 8 mp2an A 0 π A 0 < A A < π
10 sinq12gt0 A 0 π 0 < sin A
11 9 10 sylbir A 0 < A A < π 0 < sin A
12 11 3expib A 0 < A A < π 0 < sin A
13 4 12 syl A 0 π 0 < A A < π 0 < sin A
14 4 resincld A 0 π sin A
15 ltle 0 sin A 0 < sin A 0 sin A
16 1 14 15 sylancr A 0 π 0 < sin A 0 sin A
17 13 16 syld A 0 π 0 < A A < π 0 sin A
18 17 expd A 0 π 0 < A A < π 0 sin A
19 0le0 0 0
20 sin0 sin 0 = 0
21 19 20 breqtrri 0 sin 0
22 fveq2 0 = A sin 0 = sin A
23 21 22 breqtrid 0 = A 0 sin A
24 23 a1i13 A 0 π 0 = A A < π 0 sin A
25 3 simp2bi A 0 π 0 A
26 leloe 0 A 0 A 0 < A 0 = A
27 1 4 26 sylancr A 0 π 0 A 0 < A 0 = A
28 25 27 mpbid A 0 π 0 < A 0 = A
29 18 24 28 mpjaod A 0 π A < π 0 sin A
30 sinpi sin π = 0
31 19 30 breqtrri 0 sin π
32 fveq2 A = π sin A = sin π
33 31 32 breqtrrid A = π 0 sin A
34 33 a1i A 0 π A = π 0 sin A
35 3 simp3bi A 0 π A π
36 leloe A π A π A < π A = π
37 4 2 36 sylancl A 0 π A π A < π A = π
38 35 37 mpbid A 0 π A < π A = π
39 29 34 38 mpjaod A 0 π 0 sin A