Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
|
2 |
|
pire |
|
3 |
1 2
|
elicc2i |
|
4 |
3
|
simp1bi |
|
5 |
|
rexr |
|
6 |
|
rexr |
|
7 |
|
elioo2 |
|
8 |
5 6 7
|
syl2an |
|
9 |
1 2 8
|
mp2an |
|
10 |
|
sinq12gt0 |
|
11 |
9 10
|
sylbir |
|
12 |
11
|
3expib |
|
13 |
4 12
|
syl |
|
14 |
4
|
resincld |
|
15 |
|
ltle |
|
16 |
1 14 15
|
sylancr |
|
17 |
13 16
|
syld |
|
18 |
17
|
expd |
|
19 |
|
0le0 |
|
20 |
|
sin0 |
|
21 |
19 20
|
breqtrri |
|
22 |
|
fveq2 |
|
23 |
21 22
|
breqtrid |
|
24 |
23
|
a1i13 |
|
25 |
3
|
simp2bi |
|
26 |
|
leloe |
|
27 |
1 4 26
|
sylancr |
|
28 |
25 27
|
mpbid |
|
29 |
18 24 28
|
mpjaod |
|
30 |
|
sinpi |
|
31 |
19 30
|
breqtrri |
|
32 |
|
fveq2 |
|
33 |
31 32
|
breqtrrid |
|
34 |
33
|
a1i |
|
35 |
3
|
simp3bi |
|
36 |
|
leloe |
|
37 |
4 2 36
|
sylancl |
|
38 |
35 37
|
mpbid |
|
39 |
29 34 38
|
mpjaod |
|