Metamath Proof Explorer


Theorem sinq12gt0

Description: The sine of a number strictly between 0 and _pi is positive. (Contributed by Paul Chapman, 15-Mar-2008)

Ref Expression
Assertion sinq12gt0 A 0 π 0 < sin A

Proof

Step Hyp Ref Expression
1 0xr 0 *
2 pire π
3 2 rexri π *
4 elioo2 0 * π * A 0 π A 0 < A A < π
5 1 3 4 mp2an A 0 π A 0 < A A < π
6 rehalfcl A A 2
7 6 3ad2ant1 A 0 < A A < π A 2
8 halfpos2 A 0 < A 0 < A 2
9 8 biimpa A 0 < A 0 < A 2
10 9 3adant3 A 0 < A A < π 0 < A 2
11 2re 2
12 2pos 0 < 2
13 11 12 pm3.2i 2 0 < 2
14 ltdiv1 A π 2 0 < 2 A < π A 2 < π 2
15 2 13 14 mp3an23 A A < π A 2 < π 2
16 15 adantr A 0 < A A < π A 2 < π 2
17 16 biimp3a A 0 < A A < π A 2 < π 2
18 sincosq1lem A 2 0 < A 2 A 2 < π 2 0 < sin A 2
19 7 10 17 18 syl3anc A 0 < A A < π 0 < sin A 2
20 resubcl π A π A
21 2 20 mpan A π A
22 rehalfcl π A π A 2
23 21 22 syl A π A 2
24 23 3ad2ant1 A 0 < A A < π π A 2
25 posdif A π A < π 0 < π A
26 2 25 mpan2 A A < π 0 < π A
27 halfpos2 π A 0 < π A 0 < π A 2
28 21 27 syl A 0 < π A 0 < π A 2
29 26 28 bitrd A A < π 0 < π A 2
30 29 adantr A 0 < A A < π 0 < π A 2
31 30 biimp3a A 0 < A A < π 0 < π A 2
32 ltsubpos A π 0 < A π A < π
33 2 32 mpan2 A 0 < A π A < π
34 ltdiv1 π A π 2 0 < 2 π A < π π A 2 < π 2
35 2 13 34 mp3an23 π A π A < π π A 2 < π 2
36 21 35 syl A π A < π π A 2 < π 2
37 33 36 bitrd A 0 < A π A 2 < π 2
38 37 biimpa A 0 < A π A 2 < π 2
39 38 3adant3 A 0 < A A < π π A 2 < π 2
40 sincosq1lem π A 2 0 < π A 2 π A 2 < π 2 0 < sin π A 2
41 24 31 39 40 syl3anc A 0 < A A < π 0 < sin π A 2
42 recn A A
43 picn π
44 2cnne0 2 2 0
45 divsubdir π A 2 2 0 π A 2 = π 2 A 2
46 43 44 45 mp3an13 A π A 2 = π 2 A 2
47 42 46 syl A π A 2 = π 2 A 2
48 47 fveq2d A sin π A 2 = sin π 2 A 2
49 6 recnd A A 2
50 sinhalfpim A 2 sin π 2 A 2 = cos A 2
51 49 50 syl A sin π 2 A 2 = cos A 2
52 48 51 eqtrd A sin π A 2 = cos A 2
53 52 3ad2ant1 A 0 < A A < π sin π A 2 = cos A 2
54 41 53 breqtrd A 0 < A A < π 0 < cos A 2
55 resincl A 2 sin A 2
56 recoscl A 2 cos A 2
57 55 56 jca A 2 sin A 2 cos A 2
58 axmulgt0 sin A 2 cos A 2 0 < sin A 2 0 < cos A 2 0 < sin A 2 cos A 2
59 6 57 58 3syl A 0 < sin A 2 0 < cos A 2 0 < sin A 2 cos A 2
60 remulcl sin A 2 cos A 2 sin A 2 cos A 2
61 6 57 60 3syl A sin A 2 cos A 2
62 axmulgt0 2 sin A 2 cos A 2 0 < 2 0 < sin A 2 cos A 2 0 < 2 sin A 2 cos A 2
63 11 61 62 sylancr A 0 < 2 0 < sin A 2 cos A 2 0 < 2 sin A 2 cos A 2
64 12 63 mpani A 0 < sin A 2 cos A 2 0 < 2 sin A 2 cos A 2
65 59 64 syld A 0 < sin A 2 0 < cos A 2 0 < 2 sin A 2 cos A 2
66 65 3ad2ant1 A 0 < A A < π 0 < sin A 2 0 < cos A 2 0 < 2 sin A 2 cos A 2
67 19 54 66 mp2and A 0 < A A < π 0 < 2 sin A 2 cos A 2
68 2cn 2
69 2ne0 2 0
70 divcan2 A 2 2 0 2 A 2 = A
71 68 69 70 mp3an23 A 2 A 2 = A
72 42 71 syl A 2 A 2 = A
73 72 fveq2d A sin 2 A 2 = sin A
74 sin2t A 2 sin 2 A 2 = 2 sin A 2 cos A 2
75 49 74 syl A sin 2 A 2 = 2 sin A 2 cos A 2
76 73 75 eqtr3d A sin A = 2 sin A 2 cos A 2
77 76 3ad2ant1 A 0 < A A < π sin A = 2 sin A 2 cos A 2
78 67 77 breqtrrd A 0 < A A < π 0 < sin A
79 5 78 sylbi A 0 π 0 < sin A