Metamath Proof Explorer


Theorem sinq34lt0t

Description: The sine of a number strictly between _pi and 2 x. _pi is negative. (Contributed by NM, 17-Aug-2008)

Ref Expression
Assertion sinq34lt0t A π 2 π sin A < 0

Proof

Step Hyp Ref Expression
1 elioore A π 2 π A
2 picn π
3 2 addid2i 0 + π = π
4 3 eqcomi π = 0 + π
5 2 2timesi 2 π = π + π
6 4 5 oveq12i π 2 π = 0 + π π + π
7 6 eleq2i A π 2 π A 0 + π π + π
8 pire π
9 0re 0
10 iooshf A π 0 π A π 0 π A 0 + π π + π
11 9 8 10 mpanr12 A π A π 0 π A 0 + π π + π
12 8 11 mpan2 A A π 0 π A 0 + π π + π
13 7 12 bitr4id A A π 2 π A π 0 π
14 1 13 syl A π 2 π A π 2 π A π 0 π
15 14 ibi A π 2 π A π 0 π
16 sinq12gt0 A π 0 π 0 < sin A π
17 15 16 syl A π 2 π 0 < sin A π
18 1 recnd A π 2 π A
19 sinmpi A sin A π = sin A
20 18 19 syl A π 2 π sin A π = sin A
21 17 20 breqtrd A π 2 π 0 < sin A
22 1 resincld A π 2 π sin A
23 22 lt0neg1d A π 2 π sin A < 0 0 < sin A
24 21 23 mpbird A π 2 π sin A < 0