Metamath Proof Explorer


Theorem sizusglecusglem1

Description: Lemma 1 for sizusglecusg . (Contributed by Alexander van der Vekens, 12-Jan-2018) (Revised by AV, 13-Nov-2020)

Ref Expression
Hypotheses fusgrmaxsize.v V = Vtx G
fusgrmaxsize.e E = Edg G
usgrsscusgra.h V = Vtx H
usgrsscusgra.f F = Edg H
Assertion sizusglecusglem1 G USGraph H ComplUSGraph I E : E 1-1 F

Proof

Step Hyp Ref Expression
1 fusgrmaxsize.v V = Vtx G
2 fusgrmaxsize.e E = Edg G
3 usgrsscusgra.h V = Vtx H
4 usgrsscusgra.f F = Edg H
5 f1oi I E : E 1-1 onto E
6 f1of1 I E : E 1-1 onto E I E : E 1-1 E
7 5 6 ax-mp I E : E 1-1 E
8 1 2 3 4 usgredgsscusgredg G USGraph H ComplUSGraph E F
9 f1ss I E : E 1-1 E E F I E : E 1-1 F
10 7 8 9 sylancr G USGraph H ComplUSGraph I E : E 1-1 F