Metamath Proof Explorer


Theorem sizusglecusglem2

Description: Lemma 2 for sizusglecusg . (Contributed by Alexander van der Vekens, 13-Jan-2018) (Revised by AV, 13-Nov-2020)

Ref Expression
Hypotheses fusgrmaxsize.v V=VtxG
fusgrmaxsize.e E=EdgG
usgrsscusgra.h V=VtxH
usgrsscusgra.f F=EdgH
Assertion sizusglecusglem2 GUSGraphHComplUSGraphFFinEFin

Proof

Step Hyp Ref Expression
1 fusgrmaxsize.v V=VtxG
2 fusgrmaxsize.e E=EdgG
3 usgrsscusgra.h V=VtxH
4 usgrsscusgra.f F=EdgH
5 3 4 cusgrfi HComplUSGraphFFinVFin
6 5 3adant1 GUSGraphHComplUSGraphFFinVFin
7 1 isfusgr GFinUSGraphGUSGraphVFin
8 fusgrfis GFinUSGraphEdgGFin
9 7 8 sylbir GUSGraphVFinEdgGFin
10 2 9 eqeltrid GUSGraphVFinEFin
11 10 ex GUSGraphVFinEFin
12 11 3ad2ant1 GUSGraphHComplUSGraphFFinVFinEFin
13 6 12 mpd GUSGraphHComplUSGraphFFinEFin