Metamath Proof Explorer


Theorem sizusglecusglem2

Description: Lemma 2 for sizusglecusg . (Contributed by Alexander van der Vekens, 13-Jan-2018) (Revised by AV, 13-Nov-2020)

Ref Expression
Hypotheses fusgrmaxsize.v V = Vtx G
fusgrmaxsize.e E = Edg G
usgrsscusgra.h V = Vtx H
usgrsscusgra.f F = Edg H
Assertion sizusglecusglem2 G USGraph H ComplUSGraph F Fin E Fin

Proof

Step Hyp Ref Expression
1 fusgrmaxsize.v V = Vtx G
2 fusgrmaxsize.e E = Edg G
3 usgrsscusgra.h V = Vtx H
4 usgrsscusgra.f F = Edg H
5 3 4 cusgrfi H ComplUSGraph F Fin V Fin
6 5 3adant1 G USGraph H ComplUSGraph F Fin V Fin
7 1 isfusgr G FinUSGraph G USGraph V Fin
8 fusgrfis G FinUSGraph Edg G Fin
9 7 8 sylbir G USGraph V Fin Edg G Fin
10 2 9 eqeltrid G USGraph V Fin E Fin
11 10 ex G USGraph V Fin E Fin
12 11 3ad2ant1 G USGraph H ComplUSGraph F Fin V Fin E Fin
13 6 12 mpd G USGraph H ComplUSGraph F Fin E Fin