Metamath Proof Explorer


Theorem sleadd1im

Description: Surreal less-than or equal cancels under addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion sleadd1im A No B No C No A + s C s B + s C A s B

Proof

Step Hyp Ref Expression
1 sltadd1im B No A No C No B < s A B + s C < s A + s C
2 1 3com12 A No B No C No B < s A B + s C < s A + s C
3 sltnle B No A No B < s A ¬ A s B
4 3 ancoms A No B No B < s A ¬ A s B
5 4 3adant3 A No B No C No B < s A ¬ A s B
6 addscl B No C No B + s C No
7 6 3adant1 A No B No C No B + s C No
8 addscl A No C No A + s C No
9 sltnle B + s C No A + s C No B + s C < s A + s C ¬ A + s C s B + s C
10 7 8 9 3imp3i2an A No B No C No B + s C < s A + s C ¬ A + s C s B + s C
11 2 5 10 3imtr3d A No B No C No ¬ A s B ¬ A + s C s B + s C
12 11 con4d A No B No C No A + s C s B + s C A s B