Metamath Proof Explorer


Theorem sleadd2d

Description: Addition to both sides of surreal less-than or equal. (Contributed by Scott Fenton, 5-Feb-2025)

Ref Expression
Hypotheses addscand.1 φ A No
addscand.2 φ B No
addscand.3 φ C No
Assertion sleadd2d φ A s B C + s A s C + s B

Proof

Step Hyp Ref Expression
1 addscand.1 φ A No
2 addscand.2 φ B No
3 addscand.3 φ C No
4 sleadd2 A No B No C No A s B C + s A s C + s B
5 1 2 3 4 syl3anc φ A s B C + s A s C + s B