Metamath Proof Explorer


Theorem sleadd2im

Description: Surreal less-than or equal cancels under addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion sleadd2im A No B No C No C + s A s C + s B A s B

Proof

Step Hyp Ref Expression
1 addscom A No C No A + s C = C + s A
2 1 3adant2 A No B No C No A + s C = C + s A
3 addscom B No C No B + s C = C + s B
4 3 3adant1 A No B No C No B + s C = C + s B
5 2 4 breq12d A No B No C No A + s C s B + s C C + s A s C + s B
6 sleadd1im A No B No C No A + s C s B + s C A s B
7 5 6 sylbird A No B No C No C + s A s C + s B A s B