Metamath Proof Explorer


Theorem slemul1ad

Description: Multiplication of both sides of surreal less-than or equal by a non-negative number. (Contributed by Scott Fenton, 17-Apr-2025)

Ref Expression
Hypotheses slemul1ad.1 φ A No
slemul1ad.2 φ B No
slemul1ad.3 φ C No
slemul1ad.4 φ 0 s s C
slemul1ad.5 φ A s B
Assertion slemul1ad φ A s C s B s C

Proof

Step Hyp Ref Expression
1 slemul1ad.1 φ A No
2 slemul1ad.2 φ B No
3 slemul1ad.3 φ C No
4 slemul1ad.4 φ 0 s s C
5 slemul1ad.5 φ A s B
6 5 adantr φ 0 s < s C A s B
7 1 adantr φ 0 s < s C A No
8 2 adantr φ 0 s < s C B No
9 3 adantr φ 0 s < s C C No
10 simpr φ 0 s < s C 0 s < s C
11 7 8 9 10 slemul1d φ 0 s < s C A s B A s C s B s C
12 6 11 mpbid φ 0 s < s C A s C s B s C
13 0sno 0 s No
14 slerflex 0 s No 0 s s 0 s
15 13 14 mp1i φ 0 s s 0 s
16 muls01 A No A s 0 s = 0 s
17 1 16 syl φ A s 0 s = 0 s
18 muls01 B No B s 0 s = 0 s
19 2 18 syl φ B s 0 s = 0 s
20 15 17 19 3brtr4d φ A s 0 s s B s 0 s
21 oveq2 0 s = C A s 0 s = A s C
22 oveq2 0 s = C B s 0 s = B s C
23 21 22 breq12d 0 s = C A s 0 s s B s 0 s A s C s B s C
24 20 23 syl5ibcom φ 0 s = C A s C s B s C
25 24 imp φ 0 s = C A s C s B s C
26 sleloe 0 s No C No 0 s s C 0 s < s C 0 s = C
27 13 3 26 sylancr φ 0 s s C 0 s < s C 0 s = C
28 4 27 mpbid φ 0 s < s C 0 s = C
29 12 25 28 mpjaodan φ A s C s B s C