Metamath Proof Explorer


Theorem slemul1d

Description: Multiplication of both sides of surreal less-than or equal by a positive number. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses sltmul12d.1 φ A No
sltmul12d.2 φ B No
sltmul12d.3 φ C No
sltmul12d.4 φ 0 s < s C
Assertion slemul1d φ A s B A s C s B s C

Proof

Step Hyp Ref Expression
1 sltmul12d.1 φ A No
2 sltmul12d.2 φ B No
3 sltmul12d.3 φ C No
4 sltmul12d.4 φ 0 s < s C
5 2 1 3 4 sltmul1d φ B < s A B s C < s A s C
6 5 notbid φ ¬ B < s A ¬ B s C < s A s C
7 slenlt A No B No A s B ¬ B < s A
8 1 2 7 syl2anc φ A s B ¬ B < s A
9 1 3 mulscld φ A s C No
10 2 3 mulscld φ B s C No
11 slenlt A s C No B s C No A s C s B s C ¬ B s C < s A s C
12 9 10 11 syl2anc φ A s C s B s C ¬ B s C < s A s C
13 6 8 12 3bitr4d φ A s B A s C s B s C