Metamath Proof Explorer


Theorem slemul1d

Description: Multiplication of both sides of surreal less-than or equal by a positive number. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses sltmul12d.1 φ A No
sltmul12d.2 φ B No
sltmul12d.3 φ C No
sltmul12d.4 No typesetting found for |- ( ph -> 0s
Assertion slemul1d Could not format assertion : No typesetting found for |- ( ph -> ( A <_s B <-> ( A x.s C ) <_s ( B x.s C ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 sltmul12d.1 φ A No
2 sltmul12d.2 φ B No
3 sltmul12d.3 φ C No
4 sltmul12d.4 Could not format ( ph -> 0s 0s
5 2 1 3 4 sltmul1d Could not format ( ph -> ( B ( B x.s C ) ( B ( B x.s C )
6 5 notbid Could not format ( ph -> ( -. B -. ( B x.s C ) ( -. B -. ( B x.s C )
7 slenlt A No B No A s B ¬ B < s A
8 1 2 7 syl2anc φ A s B ¬ B < s A
9 1 3 mulscld Could not format ( ph -> ( A x.s C ) e. No ) : No typesetting found for |- ( ph -> ( A x.s C ) e. No ) with typecode |-
10 2 3 mulscld Could not format ( ph -> ( B x.s C ) e. No ) : No typesetting found for |- ( ph -> ( B x.s C ) e. No ) with typecode |-
11 slenlt Could not format ( ( ( A x.s C ) e. No /\ ( B x.s C ) e. No ) -> ( ( A x.s C ) <_s ( B x.s C ) <-> -. ( B x.s C ) ( ( A x.s C ) <_s ( B x.s C ) <-> -. ( B x.s C )
12 9 10 11 syl2anc Could not format ( ph -> ( ( A x.s C ) <_s ( B x.s C ) <-> -. ( B x.s C ) ( ( A x.s C ) <_s ( B x.s C ) <-> -. ( B x.s C )
13 6 8 12 3bitr4d Could not format ( ph -> ( A <_s B <-> ( A x.s C ) <_s ( B x.s C ) ) ) : No typesetting found for |- ( ph -> ( A <_s B <-> ( A x.s C ) <_s ( B x.s C ) ) ) with typecode |-