Metamath Proof Explorer


Theorem slemul2d

Description: Multiplication of both sides of surreal less-than or equal by a positive number. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses sltmul12d.1 φANo
sltmul12d.2 φBNo
sltmul12d.3 φCNo
sltmul12d.4 No typesetting found for |- ( ph -> 0s
Assertion slemul2d Could not format assertion : No typesetting found for |- ( ph -> ( A <_s B <-> ( C x.s A ) <_s ( C x.s B ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 sltmul12d.1 φANo
2 sltmul12d.2 φBNo
3 sltmul12d.3 φCNo
4 sltmul12d.4 Could not format ( ph -> 0s 0s
5 2 1 3 4 sltmul2d Could not format ( ph -> ( B ( C x.s B ) ( B ( C x.s B )
6 5 notbid Could not format ( ph -> ( -. B -. ( C x.s B ) ( -. B -. ( C x.s B )
7 slenlt ANoBNoAsB¬B<sA
8 1 2 7 syl2anc φAsB¬B<sA
9 3 1 mulscld Could not format ( ph -> ( C x.s A ) e. No ) : No typesetting found for |- ( ph -> ( C x.s A ) e. No ) with typecode |-
10 3 2 mulscld Could not format ( ph -> ( C x.s B ) e. No ) : No typesetting found for |- ( ph -> ( C x.s B ) e. No ) with typecode |-
11 slenlt Could not format ( ( ( C x.s A ) e. No /\ ( C x.s B ) e. No ) -> ( ( C x.s A ) <_s ( C x.s B ) <-> -. ( C x.s B ) ( ( C x.s A ) <_s ( C x.s B ) <-> -. ( C x.s B )
12 9 10 11 syl2anc Could not format ( ph -> ( ( C x.s A ) <_s ( C x.s B ) <-> -. ( C x.s B ) ( ( C x.s A ) <_s ( C x.s B ) <-> -. ( C x.s B )
13 6 8 12 3bitr4d Could not format ( ph -> ( A <_s B <-> ( C x.s A ) <_s ( C x.s B ) ) ) : No typesetting found for |- ( ph -> ( A <_s B <-> ( C x.s A ) <_s ( C x.s B ) ) ) with typecode |-