Metamath Proof Explorer


Theorem slemul2d

Description: Multiplication of both sides of surreal less-than or equal by a positive number. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses sltmul12d.1 φ A No
sltmul12d.2 φ B No
sltmul12d.3 φ C No
sltmul12d.4 φ 0 s < s C
Assertion slemul2d φ A s B C s A s C s B

Proof

Step Hyp Ref Expression
1 sltmul12d.1 φ A No
2 sltmul12d.2 φ B No
3 sltmul12d.3 φ C No
4 sltmul12d.4 φ 0 s < s C
5 2 1 3 4 sltmul2d φ B < s A C s B < s C s A
6 5 notbid φ ¬ B < s A ¬ C s B < s C s A
7 slenlt A No B No A s B ¬ B < s A
8 1 2 7 syl2anc φ A s B ¬ B < s A
9 3 1 mulscld φ C s A No
10 3 2 mulscld φ C s B No
11 slenlt C s A No C s B No C s A s C s B ¬ C s B < s C s A
12 9 10 11 syl2anc φ C s A s C s B ¬ C s B < s C s A
13 6 8 12 3bitr4d φ A s B C s A s C s B