Metamath Proof Explorer


Theorem slesolex

Description: Every system of linear equations represented by a matrix with a unit as determinant has a solution. (Contributed by AV, 11-Feb-2019) (Revised by AV, 28-Feb-2019)

Ref Expression
Hypotheses slesolex.a A = N Mat R
slesolex.b B = Base A
slesolex.v V = Base R N
slesolex.x · ˙ = R maVecMul N N
slesolex.d D = N maDet R
Assertion slesolex N R CRing X B Y V D X Unit R z V X · ˙ z = Y

Proof

Step Hyp Ref Expression
1 slesolex.a A = N Mat R
2 slesolex.b B = Base A
3 slesolex.v V = Base R N
4 slesolex.x · ˙ = R maVecMul N N
5 slesolex.d D = N maDet R
6 eqid Base R = Base R
7 eqid R = R
8 crngring R CRing R Ring
9 8 adantl N R CRing R Ring
10 9 3ad2ant1 N R CRing X B Y V D X Unit R R Ring
11 1 2 matrcl X B N Fin R V
12 11 simpld X B N Fin
13 12 adantr X B Y V N Fin
14 13 3ad2ant2 N R CRing X B Y V D X Unit R N Fin
15 9 13 anim12ci N R CRing X B Y V N Fin R Ring
16 15 3adant3 N R CRing X B Y V D X Unit R N Fin R Ring
17 1 matring N Fin R Ring A Ring
18 16 17 syl N R CRing X B Y V D X Unit R A Ring
19 eqid Unit A = Unit A
20 eqid Unit R = Unit R
21 1 5 2 19 20 matunit R CRing X B X Unit A D X Unit R
22 21 bicomd R CRing X B D X Unit R X Unit A
23 22 ad2ant2lr N R CRing X B Y V D X Unit R X Unit A
24 23 biimp3a N R CRing X B Y V D X Unit R X Unit A
25 eqid inv r A = inv r A
26 eqid Base A = Base A
27 19 25 26 ringinvcl A Ring X Unit A inv r A X Base A
28 18 24 27 syl2anc N R CRing X B Y V D X Unit R inv r A X Base A
29 3 eleq2i Y V Y Base R N
30 29 biimpi Y V Y Base R N
31 30 adantl X B Y V Y Base R N
32 31 3ad2ant2 N R CRing X B Y V D X Unit R Y Base R N
33 1 4 6 7 10 14 28 32 mavmulcl N R CRing X B Y V D X Unit R inv r A X · ˙ Y Base R N
34 33 3 eleqtrrdi N R CRing X B Y V D X Unit R inv r A X · ˙ Y V
35 1 2 3 4 5 25 slesolinvbi N R CRing X B Y V D X Unit R X · ˙ z = Y z = inv r A X · ˙ Y
36 35 adantr N R CRing X B Y V D X Unit R N R CRing X B Y V D X Unit R X · ˙ z = Y z = inv r A X · ˙ Y
37 36 biimprd N R CRing X B Y V D X Unit R N R CRing X B Y V D X Unit R z = inv r A X · ˙ Y X · ˙ z = Y
38 37 impancom N R CRing X B Y V D X Unit R z = inv r A X · ˙ Y N R CRing X B Y V D X Unit R X · ˙ z = Y
39 34 38 rspcimedv N R CRing X B Y V D X Unit R N R CRing X B Y V D X Unit R z V X · ˙ z = Y
40 39 pm2.43i N R CRing X B Y V D X Unit R z V X · ˙ z = Y