Step |
Hyp |
Ref |
Expression |
1 |
|
slesolex.a |
|
2 |
|
slesolex.b |
|
3 |
|
slesolex.v |
|
4 |
|
slesolex.x |
|
5 |
|
slesolex.d |
|
6 |
|
slesolinv.i |
|
7 |
|
eqid |
|
8 |
|
crngring |
|
9 |
8
|
adantl |
|
10 |
9
|
3ad2ant1 |
|
11 |
1 2
|
matrcl |
|
12 |
11
|
simpld |
|
13 |
12
|
adantr |
|
14 |
13
|
3ad2ant2 |
|
15 |
8
|
anim2i |
|
16 |
15
|
anim1i |
|
17 |
16
|
3adant3 |
|
18 |
|
simpr |
|
19 |
18
|
3ad2ant3 |
|
20 |
1 2 3 4
|
slesolvec |
|
21 |
17 19 20
|
sylc |
|
22 |
21 3
|
eleqtrdi |
|
23 |
|
eqid |
|
24 |
9 13
|
anim12ci |
|
25 |
24
|
3adant3 |
|
26 |
1
|
matring |
|
27 |
25 26
|
syl |
|
28 |
|
eqid |
|
29 |
|
eqid |
|
30 |
1 5 2 28 29
|
matunit |
|
31 |
30
|
bicomd |
|
32 |
31
|
ad2ant2lr |
|
33 |
32
|
biimpd |
|
34 |
33
|
adantrd |
|
35 |
34
|
3impia |
|
36 |
|
eqid |
|
37 |
28 6 36
|
ringinvcl |
|
38 |
27 35 37
|
syl2anc |
|
39 |
2
|
eleq2i |
|
40 |
39
|
biimpi |
|
41 |
40
|
adantr |
|
42 |
41
|
3ad2ant2 |
|
43 |
1 7 4 10 14 22 23 38 42
|
mavmulass |
|
44 |
|
simpr |
|
45 |
44 13
|
anim12ci |
|
46 |
45
|
3adant3 |
|
47 |
1 23
|
matmulr |
|
48 |
46 47
|
syl |
|
49 |
48
|
oveqd |
|
50 |
|
eqid |
|
51 |
|
eqid |
|
52 |
28 6 50 51
|
unitlinv |
|
53 |
27 35 52
|
syl2anc |
|
54 |
49 53
|
eqtrd |
|
55 |
54
|
oveq1d |
|
56 |
1 7 4 10 14 22
|
1mavmul |
|
57 |
55 56
|
eqtrd |
|
58 |
|
oveq2 |
|
59 |
58
|
adantl |
|
60 |
59
|
3ad2ant3 |
|
61 |
43 57 60
|
3eqtr3d |
|