Metamath Proof Explorer


Theorem slesolinvbi

Description: The solution of a system of linear equations represented by a matrix with a unit as determinant is the multiplication of the inverse of the matrix with the right-hand side vector. (Contributed by AV, 11-Feb-2019) (Revised by AV, 28-Feb-2019)

Ref Expression
Hypotheses slesolex.a A = N Mat R
slesolex.b B = Base A
slesolex.v V = Base R N
slesolex.x · ˙ = R maVecMul N N
slesolex.d D = N maDet R
slesolinv.i I = inv r A
Assertion slesolinvbi N R CRing X B Y V D X Unit R X · ˙ Z = Y Z = I X · ˙ Y

Proof

Step Hyp Ref Expression
1 slesolex.a A = N Mat R
2 slesolex.b B = Base A
3 slesolex.v V = Base R N
4 slesolex.x · ˙ = R maVecMul N N
5 slesolex.d D = N maDet R
6 slesolinv.i I = inv r A
7 simpl1 N R CRing X B Y V D X Unit R X · ˙ Z = Y N R CRing
8 simpl2 N R CRing X B Y V D X Unit R X · ˙ Z = Y X B Y V
9 simp3 N R CRing X B Y V D X Unit R D X Unit R
10 9 anim1i N R CRing X B Y V D X Unit R X · ˙ Z = Y D X Unit R X · ˙ Z = Y
11 1 2 3 4 5 6 slesolinv N R CRing X B Y V D X Unit R X · ˙ Z = Y Z = I X · ˙ Y
12 7 8 10 11 syl3anc N R CRing X B Y V D X Unit R X · ˙ Z = Y Z = I X · ˙ Y
13 oveq2 Z = I X · ˙ Y X · ˙ Z = X · ˙ I X · ˙ Y
14 simpr N R CRing R CRing
15 1 2 matrcl X B N Fin R V
16 15 simpld X B N Fin
17 16 adantr X B Y V N Fin
18 14 17 anim12ci N R CRing X B Y V N Fin R CRing
19 18 3adant3 N R CRing X B Y V D X Unit R N Fin R CRing
20 eqid R maMul N N N = R maMul N N N
21 1 20 matmulr N Fin R CRing R maMul N N N = A
22 19 21 syl N R CRing X B Y V D X Unit R R maMul N N N = A
23 22 oveqd N R CRing X B Y V D X Unit R X R maMul N N N I X = X A I X
24 crngring R CRing R Ring
25 24 adantl N R CRing R Ring
26 25 17 anim12ci N R CRing X B Y V N Fin R Ring
27 26 3adant3 N R CRing X B Y V D X Unit R N Fin R Ring
28 1 matring N Fin R Ring A Ring
29 27 28 syl N R CRing X B Y V D X Unit R A Ring
30 eqid Unit A = Unit A
31 eqid Unit R = Unit R
32 1 5 2 30 31 matunit R CRing X B X Unit A D X Unit R
33 32 ad2ant2lr N R CRing X B Y V X Unit A D X Unit R
34 33 biimp3ar N R CRing X B Y V D X Unit R X Unit A
35 eqid A = A
36 eqid 1 A = 1 A
37 30 6 35 36 unitrinv A Ring X Unit A X A I X = 1 A
38 29 34 37 syl2anc N R CRing X B Y V D X Unit R X A I X = 1 A
39 23 38 eqtrd N R CRing X B Y V D X Unit R X R maMul N N N I X = 1 A
40 39 oveq1d N R CRing X B Y V D X Unit R X R maMul N N N I X · ˙ Y = 1 A · ˙ Y
41 eqid Base R = Base R
42 25 3ad2ant1 N R CRing X B Y V D X Unit R R Ring
43 17 3ad2ant2 N R CRing X B Y V D X Unit R N Fin
44 3 eleq2i Y V Y Base R N
45 44 biimpi Y V Y Base R N
46 45 adantl X B Y V Y Base R N
47 46 3ad2ant2 N R CRing X B Y V D X Unit R Y Base R N
48 2 eleq2i X B X Base A
49 48 biimpi X B X Base A
50 49 adantr X B Y V X Base A
51 50 3ad2ant2 N R CRing X B Y V D X Unit R X Base A
52 eqid Base A = Base A
53 30 6 52 ringinvcl A Ring X Unit A I X Base A
54 29 34 53 syl2anc N R CRing X B Y V D X Unit R I X Base A
55 1 41 4 42 43 47 20 51 54 mavmulass N R CRing X B Y V D X Unit R X R maMul N N N I X · ˙ Y = X · ˙ I X · ˙ Y
56 1 41 4 42 43 47 1mavmul N R CRing X B Y V D X Unit R 1 A · ˙ Y = Y
57 40 55 56 3eqtr3d N R CRing X B Y V D X Unit R X · ˙ I X · ˙ Y = Y
58 13 57 sylan9eqr N R CRing X B Y V D X Unit R Z = I X · ˙ Y X · ˙ Z = Y
59 12 58 impbida N R CRing X B Y V D X Unit R X · ˙ Z = Y Z = I X · ˙ Y