Step |
Hyp |
Ref |
Expression |
1 |
|
slesolex.a |
|
2 |
|
slesolex.b |
|
3 |
|
slesolex.v |
|
4 |
|
slesolex.x |
|
5 |
|
slesolex.d |
|
6 |
|
slesolinv.i |
|
7 |
|
simpl1 |
|
8 |
|
simpl2 |
|
9 |
|
simp3 |
|
10 |
9
|
anim1i |
|
11 |
1 2 3 4 5 6
|
slesolinv |
|
12 |
7 8 10 11
|
syl3anc |
|
13 |
|
oveq2 |
|
14 |
|
simpr |
|
15 |
1 2
|
matrcl |
|
16 |
15
|
simpld |
|
17 |
16
|
adantr |
|
18 |
14 17
|
anim12ci |
|
19 |
18
|
3adant3 |
|
20 |
|
eqid |
|
21 |
1 20
|
matmulr |
|
22 |
19 21
|
syl |
|
23 |
22
|
oveqd |
|
24 |
|
crngring |
|
25 |
24
|
adantl |
|
26 |
25 17
|
anim12ci |
|
27 |
26
|
3adant3 |
|
28 |
1
|
matring |
|
29 |
27 28
|
syl |
|
30 |
|
eqid |
|
31 |
|
eqid |
|
32 |
1 5 2 30 31
|
matunit |
|
33 |
32
|
ad2ant2lr |
|
34 |
33
|
biimp3ar |
|
35 |
|
eqid |
|
36 |
|
eqid |
|
37 |
30 6 35 36
|
unitrinv |
|
38 |
29 34 37
|
syl2anc |
|
39 |
23 38
|
eqtrd |
|
40 |
39
|
oveq1d |
|
41 |
|
eqid |
|
42 |
25
|
3ad2ant1 |
|
43 |
17
|
3ad2ant2 |
|
44 |
3
|
eleq2i |
|
45 |
44
|
biimpi |
|
46 |
45
|
adantl |
|
47 |
46
|
3ad2ant2 |
|
48 |
2
|
eleq2i |
|
49 |
48
|
biimpi |
|
50 |
49
|
adantr |
|
51 |
50
|
3ad2ant2 |
|
52 |
|
eqid |
|
53 |
30 6 52
|
ringinvcl |
|
54 |
29 34 53
|
syl2anc |
|
55 |
1 41 4 42 43 47 20 51 54
|
mavmulass |
|
56 |
1 41 4 42 43 47
|
1mavmul |
|
57 |
40 55 56
|
3eqtr3d |
|
58 |
13 57
|
sylan9eqr |
|
59 |
12 58
|
impbida |
|