Metamath Proof Explorer


Theorem slesolvec

Description: Every solution of a system of linear equations represented by a matrix and a vector is a vector. (Contributed by AV, 10-Feb-2019) (Revised by AV, 27-Feb-2019)

Ref Expression
Hypotheses slesolex.a A = N Mat R
slesolex.b B = Base A
slesolex.v V = Base R N
slesolex.x · ˙ = R maVecMul N N
Assertion slesolvec N R Ring X B Y V X · ˙ Z = Y Z V

Proof

Step Hyp Ref Expression
1 slesolex.a A = N Mat R
2 slesolex.b B = Base A
3 slesolex.v V = Base R N
4 slesolex.x · ˙ = R maVecMul N N
5 1 2 matrcl X B N Fin R V
6 5 simpld X B N Fin
7 simpr N N Fin N Fin
8 simpl N N Fin N
9 7 7 8 3jca N N Fin N Fin N Fin N
10 9 ex N N Fin N Fin N Fin N
11 10 adantr N R Ring N Fin N Fin N Fin N
12 6 11 syl5com X B N R Ring N Fin N Fin N
13 12 adantr X B Y V N R Ring N Fin N Fin N
14 13 impcom N R Ring X B Y V N Fin N Fin N
15 simpr N R Ring R Ring
16 simpr X B Y V Y V
17 15 16 anim12i N R Ring X B Y V R Ring Y V
18 eqid Base R = Base R
19 eqid Base R N × N = Base R N × N
20 18 19 3 4 3 mavmulsolcl N Fin N Fin N R Ring Y V X · ˙ Z = Y Z V
21 14 17 20 syl2anc N R Ring X B Y V X · ˙ Z = Y Z V