Metamath Proof Explorer


Theorem slesubaddd

Description: Surreal less-than or equal relationship between subtraction and addition. (Contributed by Scott Fenton, 26-May-2025)

Ref Expression
Hypotheses sltsubadd.1 φ A No
sltsubadd.2 φ B No
sltsubadd.3 φ C No
Assertion slesubaddd Could not format assertion : No typesetting found for |- ( ph -> ( ( A -s B ) <_s C <-> A <_s ( C +s B ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 sltsubadd.1 φ A No
2 sltsubadd.2 φ B No
3 sltsubadd.3 φ C No
4 3 2 1 sltaddsubd Could not format ( ph -> ( ( C +s B ) C ( ( C +s B ) C
5 4 notbid Could not format ( ph -> ( -. ( C +s B ) -. C ( -. ( C +s B ) -. C
6 3 2 addscld Could not format ( ph -> ( C +s B ) e. No ) : No typesetting found for |- ( ph -> ( C +s B ) e. No ) with typecode |-
7 slenlt Could not format ( ( A e. No /\ ( C +s B ) e. No ) -> ( A <_s ( C +s B ) <-> -. ( C +s B ) ( A <_s ( C +s B ) <-> -. ( C +s B )
8 1 6 7 syl2anc Could not format ( ph -> ( A <_s ( C +s B ) <-> -. ( C +s B ) ( A <_s ( C +s B ) <-> -. ( C +s B )
9 1 2 subscld Could not format ( ph -> ( A -s B ) e. No ) : No typesetting found for |- ( ph -> ( A -s B ) e. No ) with typecode |-
10 slenlt Could not format ( ( ( A -s B ) e. No /\ C e. No ) -> ( ( A -s B ) <_s C <-> -. C ( ( A -s B ) <_s C <-> -. C
11 9 3 10 syl2anc Could not format ( ph -> ( ( A -s B ) <_s C <-> -. C ( ( A -s B ) <_s C <-> -. C
12 5 8 11 3bitr4rd Could not format ( ph -> ( ( A -s B ) <_s C <-> A <_s ( C +s B ) ) ) : No typesetting found for |- ( ph -> ( ( A -s B ) <_s C <-> A <_s ( C +s B ) ) ) with typecode |-