Metamath Proof Explorer


Theorem slesubsub2bd

Description: Equivalence for the surreal less-than or equal relationship between differences. (Contributed by Scott Fenton, 7-Mar-2025)

Ref Expression
Hypotheses sltsubsubbd.1 φ A No
sltsubsubbd.2 φ B No
sltsubsubbd.3 φ C No
sltsubsubbd.4 φ D No
Assertion slesubsub2bd Could not format assertion : No typesetting found for |- ( ph -> ( ( A -s B ) <_s ( C -s D ) <-> ( D -s C ) <_s ( B -s A ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 sltsubsubbd.1 φ A No
2 sltsubsubbd.2 φ B No
3 sltsubsubbd.3 φ C No
4 sltsubsubbd.4 φ D No
5 3 4 1 2 sltsubsub2bd Could not format ( ph -> ( ( C -s D ) ( B -s A ) ( ( C -s D ) ( B -s A )
6 5 notbid Could not format ( ph -> ( -. ( C -s D ) -. ( B -s A ) ( -. ( C -s D ) -. ( B -s A )
7 1 2 subscld Could not format ( ph -> ( A -s B ) e. No ) : No typesetting found for |- ( ph -> ( A -s B ) e. No ) with typecode |-
8 3 4 subscld Could not format ( ph -> ( C -s D ) e. No ) : No typesetting found for |- ( ph -> ( C -s D ) e. No ) with typecode |-
9 slenlt Could not format ( ( ( A -s B ) e. No /\ ( C -s D ) e. No ) -> ( ( A -s B ) <_s ( C -s D ) <-> -. ( C -s D ) ( ( A -s B ) <_s ( C -s D ) <-> -. ( C -s D )
10 7 8 9 syl2anc Could not format ( ph -> ( ( A -s B ) <_s ( C -s D ) <-> -. ( C -s D ) ( ( A -s B ) <_s ( C -s D ) <-> -. ( C -s D )
11 4 3 subscld Could not format ( ph -> ( D -s C ) e. No ) : No typesetting found for |- ( ph -> ( D -s C ) e. No ) with typecode |-
12 2 1 subscld Could not format ( ph -> ( B -s A ) e. No ) : No typesetting found for |- ( ph -> ( B -s A ) e. No ) with typecode |-
13 slenlt Could not format ( ( ( D -s C ) e. No /\ ( B -s A ) e. No ) -> ( ( D -s C ) <_s ( B -s A ) <-> -. ( B -s A ) ( ( D -s C ) <_s ( B -s A ) <-> -. ( B -s A )
14 11 12 13 syl2anc Could not format ( ph -> ( ( D -s C ) <_s ( B -s A ) <-> -. ( B -s A ) ( ( D -s C ) <_s ( B -s A ) <-> -. ( B -s A )
15 6 10 14 3bitr4d Could not format ( ph -> ( ( A -s B ) <_s ( C -s D ) <-> ( D -s C ) <_s ( B -s A ) ) ) : No typesetting found for |- ( ph -> ( ( A -s B ) <_s ( C -s D ) <-> ( D -s C ) <_s ( B -s A ) ) ) with typecode |-