Metamath Proof Explorer


Theorem slesubsub2bd

Description: Equivalence for the surreal less-than or equal relationship between differences. (Contributed by Scott Fenton, 7-Mar-2025)

Ref Expression
Hypotheses sltsubsubbd.1 φ A No
sltsubsubbd.2 φ B No
sltsubsubbd.3 φ C No
sltsubsubbd.4 φ D No
Assertion slesubsub2bd φ A - s B s C - s D D - s C s B - s A

Proof

Step Hyp Ref Expression
1 sltsubsubbd.1 φ A No
2 sltsubsubbd.2 φ B No
3 sltsubsubbd.3 φ C No
4 sltsubsubbd.4 φ D No
5 3 4 1 2 sltsubsub2bd φ C - s D < s A - s B B - s A < s D - s C
6 5 notbid φ ¬ C - s D < s A - s B ¬ B - s A < s D - s C
7 1 2 subscld φ A - s B No
8 3 4 subscld φ C - s D No
9 slenlt A - s B No C - s D No A - s B s C - s D ¬ C - s D < s A - s B
10 7 8 9 syl2anc φ A - s B s C - s D ¬ C - s D < s A - s B
11 4 3 subscld φ D - s C No
12 2 1 subscld φ B - s A No
13 slenlt D - s C No B - s A No D - s C s B - s A ¬ B - s A < s D - s C
14 11 12 13 syl2anc φ D - s C s B - s A ¬ B - s A < s D - s C
15 6 10 14 3bitr4d φ A - s B s C - s D D - s C s B - s A