Metamath Proof Explorer


Theorem slesubsubbd

Description: Equivalence for the surreal less-than or equal relationship between differences. (Contributed by Scott Fenton, 7-Mar-2025)

Ref Expression
Hypotheses sltsubsubbd.1 φ A No
sltsubsubbd.2 φ B No
sltsubsubbd.3 φ C No
sltsubsubbd.4 φ D No
Assertion slesubsubbd Could not format assertion : No typesetting found for |- ( ph -> ( ( A -s C ) <_s ( B -s D ) <-> ( A -s B ) <_s ( C -s D ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 sltsubsubbd.1 φ A No
2 sltsubsubbd.2 φ B No
3 sltsubsubbd.3 φ C No
4 sltsubsubbd.4 φ D No
5 2 1 4 3 sltsubsub3bd Could not format ( ph -> ( ( B -s D ) ( C -s D ) ( ( B -s D ) ( C -s D )
6 5 notbid Could not format ( ph -> ( -. ( B -s D ) -. ( C -s D ) ( -. ( B -s D ) -. ( C -s D )
7 1 3 subscld Could not format ( ph -> ( A -s C ) e. No ) : No typesetting found for |- ( ph -> ( A -s C ) e. No ) with typecode |-
8 2 4 subscld Could not format ( ph -> ( B -s D ) e. No ) : No typesetting found for |- ( ph -> ( B -s D ) e. No ) with typecode |-
9 slenlt Could not format ( ( ( A -s C ) e. No /\ ( B -s D ) e. No ) -> ( ( A -s C ) <_s ( B -s D ) <-> -. ( B -s D ) ( ( A -s C ) <_s ( B -s D ) <-> -. ( B -s D )
10 7 8 9 syl2anc Could not format ( ph -> ( ( A -s C ) <_s ( B -s D ) <-> -. ( B -s D ) ( ( A -s C ) <_s ( B -s D ) <-> -. ( B -s D )
11 1 2 subscld Could not format ( ph -> ( A -s B ) e. No ) : No typesetting found for |- ( ph -> ( A -s B ) e. No ) with typecode |-
12 3 4 subscld Could not format ( ph -> ( C -s D ) e. No ) : No typesetting found for |- ( ph -> ( C -s D ) e. No ) with typecode |-
13 slenlt Could not format ( ( ( A -s B ) e. No /\ ( C -s D ) e. No ) -> ( ( A -s B ) <_s ( C -s D ) <-> -. ( C -s D ) ( ( A -s B ) <_s ( C -s D ) <-> -. ( C -s D )
14 11 12 13 syl2anc Could not format ( ph -> ( ( A -s B ) <_s ( C -s D ) <-> -. ( C -s D ) ( ( A -s B ) <_s ( C -s D ) <-> -. ( C -s D )
15 6 10 14 3bitr4d Could not format ( ph -> ( ( A -s C ) <_s ( B -s D ) <-> ( A -s B ) <_s ( C -s D ) ) ) : No typesetting found for |- ( ph -> ( ( A -s C ) <_s ( B -s D ) <-> ( A -s B ) <_s ( C -s D ) ) ) with typecode |-