Database
SURREAL NUMBERS
Initial consequences of Alling's axioms
Ordering Theorems
sletric
Next ⟩
maxs1
Metamath Proof Explorer
Ascii
Unicode
Theorem
sletric
Description:
Surreal trichotomy law.
(Contributed by
Scott Fenton
, 14-Feb-2025)
Ref
Expression
Assertion
sletric
⊢
A
∈
No
∧
B
∈
No
→
A
≤
s
B
∨
B
≤
s
A
Proof
Step
Hyp
Ref
Expression
1
sltasym
⊢
B
∈
No
∧
A
∈
No
→
B
<
s
A
→
¬
A
<
s
B
2
sltnle
⊢
B
∈
No
∧
A
∈
No
→
B
<
s
A
↔
¬
A
≤
s
B
3
2
bicomd
⊢
B
∈
No
∧
A
∈
No
→
¬
A
≤
s
B
↔
B
<
s
A
4
slenlt
⊢
B
∈
No
∧
A
∈
No
→
B
≤
s
A
↔
¬
A
<
s
B
5
1
3
4
3imtr4d
⊢
B
∈
No
∧
A
∈
No
→
¬
A
≤
s
B
→
B
≤
s
A
6
5
orrd
⊢
B
∈
No
∧
A
∈
No
→
A
≤
s
B
∨
B
≤
s
A
7
6
ancoms
⊢
A
∈
No
∧
B
∈
No
→
A
≤
s
B
∨
B
≤
s
A