Metamath Proof Explorer


Theorem sletric

Description: Surreal trichotomy law. (Contributed by Scott Fenton, 14-Feb-2025)

Ref Expression
Assertion sletric A No B No A s B B s A

Proof

Step Hyp Ref Expression
1 sltasym B No A No B < s A ¬ A < s B
2 sltnle B No A No B < s A ¬ A s B
3 2 bicomd B No A No ¬ A s B B < s A
4 slenlt B No A No B s A ¬ A < s B
5 1 3 4 3imtr4d B No A No ¬ A s B B s A
6 5 orrd B No A No A s B B s A
7 6 ancoms A No B No A s B B s A