Metamath Proof Explorer


Theorem slotsbhcdif

Description: The slots Base , Hom and comp are different. (Contributed by AV, 5-Mar-2020)

Ref Expression
Assertion slotsbhcdif Base ndx Hom ndx Base ndx comp ndx Hom ndx comp ndx

Proof

Step Hyp Ref Expression
1 df-base Base = Slot 1
2 1nn 1
3 1 2 ndxarg Base ndx = 1
4 1re 1
5 4nn0 4 0
6 1nn0 1 0
7 1lt10 1 < 10
8 2 5 6 7 declti 1 < 14
9 4 8 ltneii 1 14
10 homndx Hom ndx = 14
11 9 10 neeqtrri 1 Hom ndx
12 3 11 eqnetri Base ndx Hom ndx
13 5nn0 5 0
14 2 13 6 7 declti 1 < 15
15 4 14 ltneii 1 15
16 ccondx comp ndx = 15
17 15 16 neeqtrri 1 comp ndx
18 3 17 eqnetri Base ndx comp ndx
19 6 5 deccl 14 0
20 19 nn0rei 14
21 5nn 5
22 4lt5 4 < 5
23 6 5 21 22 declt 14 < 15
24 20 23 ltneii 14 15
25 24 16 neeqtrri 14 comp ndx
26 10 25 eqnetri Hom ndx comp ndx
27 12 18 26 3pm3.2i Base ndx Hom ndx Base ndx comp ndx Hom ndx comp ndx