Metamath Proof Explorer


Theorem slt2addd

Description: Adding both sides of two surreal less-than relations. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Hypotheses slt2addd.1 φ A No
slt2addd.2 φ B No
slt2addd.3 φ C No
slt2addd.4 φ D No
slt2addd.5 φ A < s C
slt2addd.6 φ B < s D
Assertion slt2addd φ A + s B < s C + s D

Proof

Step Hyp Ref Expression
1 slt2addd.1 φ A No
2 slt2addd.2 φ B No
3 slt2addd.3 φ C No
4 slt2addd.4 φ D No
5 slt2addd.5 φ A < s C
6 slt2addd.6 φ B < s D
7 1 2 addscld φ A + s B No
8 3 2 addscld φ C + s B No
9 3 4 addscld φ C + s D No
10 1 3 2 sltadd1d φ A < s C A + s B < s C + s B
11 5 10 mpbid φ A + s B < s C + s B
12 2 4 3 sltadd2d φ B < s D C + s B < s C + s D
13 6 12 mpbid φ C + s B < s C + s D
14 7 8 9 11 13 slttrd φ A + s B < s C + s D