Metamath Proof Explorer


Theorem slt2addd

Description: Adding both sides of two surreal less-than relations. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Hypotheses slt2addd.1 φ A No
slt2addd.2 φ B No
slt2addd.3 φ C No
slt2addd.4 φ D No
slt2addd.5 φ A < s C
slt2addd.6 φ B < s D
Assertion slt2addd Could not format assertion : No typesetting found for |- ( ph -> ( A +s B )

Proof

Step Hyp Ref Expression
1 slt2addd.1 φ A No
2 slt2addd.2 φ B No
3 slt2addd.3 φ C No
4 slt2addd.4 φ D No
5 slt2addd.5 φ A < s C
6 slt2addd.6 φ B < s D
7 1 2 addscld Could not format ( ph -> ( A +s B ) e. No ) : No typesetting found for |- ( ph -> ( A +s B ) e. No ) with typecode |-
8 3 2 addscld Could not format ( ph -> ( C +s B ) e. No ) : No typesetting found for |- ( ph -> ( C +s B ) e. No ) with typecode |-
9 3 4 addscld Could not format ( ph -> ( C +s D ) e. No ) : No typesetting found for |- ( ph -> ( C +s D ) e. No ) with typecode |-
10 1 3 2 sltadd1d Could not format ( ph -> ( A ( A +s B ) ( A ( A +s B )
11 5 10 mpbid Could not format ( ph -> ( A +s B ) ( A +s B )
12 2 4 3 sltadd2d Could not format ( ph -> ( B ( C +s B ) ( B ( C +s B )
13 6 12 mpbid Could not format ( ph -> ( C +s B ) ( C +s B )
14 7 8 9 11 13 slttrd Could not format ( ph -> ( A +s B ) ( A +s B )