Database
SURREAL NUMBERS
Surreal arithmetic
Addition
sltadd1
Next ⟩
addscan2
Metamath Proof Explorer
Ascii
Unicode
Theorem
sltadd1
Description:
Addition to both sides of surreal less-than.
(Contributed by
Scott Fenton
, 21-Jan-2025)
Ref
Expression
Assertion
sltadd1
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
A
<
s
B
↔
A
+
s
C
<
s
B
+
s
C
Proof
Step
Hyp
Ref
Expression
1
sltadd2
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
A
<
s
B
↔
C
+
s
A
<
s
C
+
s
B
2
addscom
⊢
A
∈
No
∧
C
∈
No
→
A
+
s
C
=
C
+
s
A
3
2
3adant2
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
A
+
s
C
=
C
+
s
A
4
addscom
⊢
B
∈
No
∧
C
∈
No
→
B
+
s
C
=
C
+
s
B
5
4
3adant1
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
B
+
s
C
=
C
+
s
B
6
3
5
breq12d
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
A
+
s
C
<
s
B
+
s
C
↔
C
+
s
A
<
s
C
+
s
B
7
1
6
bitr4d
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
A
<
s
B
↔
A
+
s
C
<
s
B
+
s
C