Metamath Proof Explorer


Theorem sltadd1

Description: Addition to both sides of surreal less-than. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion sltadd1 Could not format assertion : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A ( A +s C )

Proof

Step Hyp Ref Expression
1 sltadd2 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( A ( C +s A ) ( A ( C +s A )
2 addscom Could not format ( ( A e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) ) : No typesetting found for |- ( ( A e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) ) with typecode |-
3 2 3adant2 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) ) with typecode |-
4 addscom Could not format ( ( B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) ) : No typesetting found for |- ( ( B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) ) with typecode |-
5 4 3adant1 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) ) with typecode |-
6 3 5 breq12d Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C ) ( C +s A ) ( ( A +s C ) ( C +s A )
7 1 6 bitr4d Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( A ( A +s C ) ( A ( A +s C )