Metamath Proof Explorer


Theorem sltadd1d

Description: Addition to both sides of surreal less-than. (Contributed by Scott Fenton, 5-Feb-2025)

Ref Expression
Hypotheses addscand.1 φ A No
addscand.2 φ B No
addscand.3 φ C No
Assertion sltadd1d Could not format assertion : No typesetting found for |- ( ph -> ( A ( A +s C )

Proof

Step Hyp Ref Expression
1 addscand.1 φ A No
2 addscand.2 φ B No
3 addscand.3 φ C No
4 sltadd1 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( A ( A +s C ) ( A ( A +s C )
5 1 2 3 4 syl3anc Could not format ( ph -> ( A ( A +s C ) ( A ( A +s C )