Metamath Proof Explorer


Theorem sltadd1im

Description: Surreal less-than is preserved under addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion sltadd1im A No B No C No A < s B A + s C < s B + s C

Proof

Step Hyp Ref Expression
1 addsprop C No A No B No C + s A No A < s B A + s C < s B + s C
2 1 3coml A No B No C No C + s A No A < s B A + s C < s B + s C
3 2 simprd A No B No C No A < s B A + s C < s B + s C