Metamath Proof Explorer


Theorem sltadd2

Description: Addition to both sides of surreal less-than. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion sltadd2 A No B No C No A < s B C + s A < s C + s B

Proof

Step Hyp Ref Expression
1 sleadd2 B No A No C No B s A C + s B s C + s A
2 1 3com12 A No B No C No B s A C + s B s C + s A
3 2 notbid A No B No C No ¬ B s A ¬ C + s B s C + s A
4 sltnle A No B No A < s B ¬ B s A
5 4 3adant3 A No B No C No A < s B ¬ B s A
6 simp3 A No B No C No C No
7 simp1 A No B No C No A No
8 6 7 addscld A No B No C No C + s A No
9 simp2 A No B No C No B No
10 6 9 addscld A No B No C No C + s B No
11 sltnle C + s A No C + s B No C + s A < s C + s B ¬ C + s B s C + s A
12 8 10 11 syl2anc A No B No C No C + s A < s C + s B ¬ C + s B s C + s A
13 3 5 12 3bitr4d A No B No C No A < s B C + s A < s C + s B