Database
SURREAL NUMBERS
Surreal arithmetic
Addition
sltadd2
Next ⟩
sltadd1
Metamath Proof Explorer
Ascii
Unicode
Theorem
sltadd2
Description:
Addition to both sides of surreal less-than.
(Contributed by
Scott Fenton
, 21-Jan-2025)
Ref
Expression
Assertion
sltadd2
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
A
<
s
B
↔
C
+
s
A
<
s
C
+
s
B
Proof
Step
Hyp
Ref
Expression
1
sleadd2
⊢
B
∈
No
∧
A
∈
No
∧
C
∈
No
→
B
≤
s
A
↔
C
+
s
B
≤
s
C
+
s
A
2
1
3com12
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
B
≤
s
A
↔
C
+
s
B
≤
s
C
+
s
A
3
2
notbid
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
¬
B
≤
s
A
↔
¬
C
+
s
B
≤
s
C
+
s
A
4
sltnle
⊢
A
∈
No
∧
B
∈
No
→
A
<
s
B
↔
¬
B
≤
s
A
5
4
3adant3
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
A
<
s
B
↔
¬
B
≤
s
A
6
simp3
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
C
∈
No
7
simp1
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
A
∈
No
8
6
7
addscld
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
C
+
s
A
∈
No
9
simp2
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
B
∈
No
10
6
9
addscld
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
C
+
s
B
∈
No
11
sltnle
⊢
C
+
s
A
∈
No
∧
C
+
s
B
∈
No
→
C
+
s
A
<
s
C
+
s
B
↔
¬
C
+
s
B
≤
s
C
+
s
A
12
8
10
11
syl2anc
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
C
+
s
A
<
s
C
+
s
B
↔
¬
C
+
s
B
≤
s
C
+
s
A
13
3
5
12
3bitr4d
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
A
<
s
B
↔
C
+
s
A
<
s
C
+
s
B