Metamath Proof Explorer


Theorem sltadd2im

Description: Surreal less-than is preserved under addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion sltadd2im A No B No C No A < s B C + s A < s C + s B

Proof

Step Hyp Ref Expression
1 sltadd1im A No B No C No A < s B A + s C < s B + s C
2 addscom A No C No A + s C = C + s A
3 2 3adant2 A No B No C No A + s C = C + s A
4 addscom B No C No B + s C = C + s B
5 4 3adant1 A No B No C No B + s C = C + s B
6 3 5 breq12d A No B No C No A + s C < s B + s C C + s A < s C + s B
7 1 6 sylibd A No B No C No A < s B C + s A < s C + s B