Metamath Proof Explorer


Theorem sltdivmul2wd

Description: Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025)

Ref Expression
Hypotheses sltdivmulwd.1 φ A No
sltdivmulwd.2 φ B No
sltdivmulwd.3 φ C No
sltdivmulwd.4 φ 0 s < s C
sltdivmulwd.5 φ x No C s x = 1 s
Assertion sltdivmul2wd φ A / su C < s B A < s B s C

Proof

Step Hyp Ref Expression
1 sltdivmulwd.1 φ A No
2 sltdivmulwd.2 φ B No
3 sltdivmulwd.3 φ C No
4 sltdivmulwd.4 φ 0 s < s C
5 sltdivmulwd.5 φ x No C s x = 1 s
6 1 2 3 4 5 sltdivmulwd φ A / su C < s B A < s C s B
7 2 3 mulscomd φ B s C = C s B
8 7 breq2d φ A < s B s C A < s C s B
9 6 8 bitr4d φ A / su C < s B A < s B s C