Metamath Proof Explorer


Theorem sltdivmuld

Description: Surreal less-than relationship between division and multiplication. (Contributed by Scott Fenton, 16-Mar-2025)

Ref Expression
Hypotheses sltdivmuld.1 φ A No
sltdivmuld.2 φ B No
sltdivmuld.3 φ C No
sltdivmuld.4 φ 0 s < s C
Assertion sltdivmuld φ A / su C < s B A < s C s B

Proof

Step Hyp Ref Expression
1 sltdivmuld.1 φ A No
2 sltdivmuld.2 φ B No
3 sltdivmuld.3 φ C No
4 sltdivmuld.4 φ 0 s < s C
5 4 sgt0ne0d φ C 0 s
6 3 5 recsexd φ x No C s x = 1 s
7 1 2 3 4 6 sltdivmulwd φ A / su C < s B A < s C s B