Metamath Proof Explorer


Theorem sltdivmulwd

Description: Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025)

Ref Expression
Hypotheses sltdivmulwd.1 φ A No
sltdivmulwd.2 φ B No
sltdivmulwd.3 φ C No
sltdivmulwd.4 φ 0 s < s C
sltdivmulwd.5 φ x No C s x = 1 s
Assertion sltdivmulwd φ A / su C < s B A < s C s B

Proof

Step Hyp Ref Expression
1 sltdivmulwd.1 φ A No
2 sltdivmulwd.2 φ B No
3 sltdivmulwd.3 φ C No
4 sltdivmulwd.4 φ 0 s < s C
5 sltdivmulwd.5 φ x No C s x = 1 s
6 4 sgt0ne0d φ C 0 s
7 1 3 6 5 divsclwd φ A / su C No
8 7 2 3 4 sltmul2d φ A / su C < s B C s A / su C < s C s B
9 1 3 6 5 divscan2wd φ C s A / su C = A
10 9 breq1d φ C s A / su C < s C s B A < s C s B
11 8 10 bitrd φ A / su C < s B A < s C s B