Metamath Proof Explorer


Theorem sltled

Description: Surreal less-than implies less-than or equal. (Contributed by Scott Fenton, 16-Feb-2025)

Ref Expression
Hypotheses sltled.1 φ A No
sltled.2 φ B No
sltled.3 φ A < s B
Assertion sltled φ A s B

Proof

Step Hyp Ref Expression
1 sltled.1 φ A No
2 sltled.2 φ B No
3 sltled.3 φ A < s B
4 1 2 jca φ A No B No
5 sltasym A No B No A < s B ¬ B < s A
6 4 3 5 sylc φ ¬ B < s A
7 slenlt A No B No A s B ¬ B < s A
8 1 2 7 syl2anc φ A s B ¬ B < s A
9 6 8 mpbird φ A s B