Metamath Proof Explorer


Theorem sltlend

Description: Surreal less-than in terms of less-than or equal. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Hypotheses sltlen.1 φ A No
sltlen.2 φ B No
Assertion sltlend φ A < s B A s B B A

Proof

Step Hyp Ref Expression
1 sltlen.1 φ A No
2 sltlen.2 φ B No
3 1 adantr φ A < s B A No
4 2 adantr φ A < s B B No
5 simpr φ A < s B A < s B
6 3 4 5 sltled φ A < s B A s B
7 6 ex φ A < s B A s B
8 sltne A No A < s B B A
9 1 8 sylan φ A < s B B A
10 9 ex φ A < s B B A
11 7 10 jcad φ A < s B A s B B A
12 sleloe A No B No A s B A < s B A = B
13 1 2 12 syl2anc φ A s B A < s B A = B
14 eqneqall B = A B A A < s B
15 14 eqcoms A = B B A A < s B
16 15 jao1i A < s B A = B B A A < s B
17 13 16 biimtrdi φ A s B B A A < s B
18 17 impd φ A s B B A A < s B
19 11 18 impbid φ A < s B A s B B A