Metamath Proof Explorer


Theorem sltlend

Description: Surreal less-than in terms of less-than or equal. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Hypotheses sltlen.1 φANo
sltlen.2 φBNo
Assertion sltlend φA<sBAsBBA

Proof

Step Hyp Ref Expression
1 sltlen.1 φANo
2 sltlen.2 φBNo
3 1 adantr φA<sBANo
4 2 adantr φA<sBBNo
5 simpr φA<sBA<sB
6 3 4 5 sltled φA<sBAsB
7 6 ex φA<sBAsB
8 sltne ANoA<sBBA
9 1 8 sylan φA<sBBA
10 9 ex φA<sBBA
11 7 10 jcad φA<sBAsBBA
12 sleloe ANoBNoAsBA<sBA=B
13 1 2 12 syl2anc φAsBA<sBA=B
14 eqneqall B=ABAA<sB
15 14 eqcoms A=BBAA<sB
16 15 jao1i A<sBA=BBAA<sB
17 13 16 biimtrdi φAsBBAA<sB
18 17 impd φAsBBAA<sB
19 11 18 impbid φA<sBAsBBA