Metamath Proof Explorer


Theorem sltmul

Description: An ordering relationship for surreal multiplication. Compare theorem 8(iii) of Conway p. 19. (Contributed by Scott Fenton, 5-Mar-2025)

Ref Expression
Assertion sltmul A No B No C No D No A < s B C < s D A s D - s A s C < s B s D - s B s C

Proof

Step Hyp Ref Expression
1 0sno 0 s No
2 1 1 pm3.2i 0 s No 0 s No
3 mulsprop 0 s No 0 s No A No B No C No D No 0 s s 0 s No A < s B C < s D A s D - s A s C < s B s D - s B s C
4 2 3 mp3an1 A No B No C No D No 0 s s 0 s No A < s B C < s D A s D - s A s C < s B s D - s B s C
5 4 simprd A No B No C No D No A < s B C < s D A s D - s A s C < s B s D - s B s C