Metamath Proof Explorer


Theorem sltmul12ad

Description: Comparison of the product of two positive surreals. (Contributed by Scott Fenton, 17-Apr-2025)

Ref Expression
Hypotheses sltmul12ad.1 φ A No
sltmul12ad.2 φ B No
sltmul12ad.3 φ C No
sltmul12ad.4 φ D No
sltmul12ad.5 No typesetting found for |- ( ph -> 0s <_s A ) with typecode |-
sltmul12ad.6 φ A < s B
sltmul12ad.7 No typesetting found for |- ( ph -> 0s <_s C ) with typecode |-
sltmul12ad.8 φ C < s D
Assertion sltmul12ad Could not format assertion : No typesetting found for |- ( ph -> ( A x.s C )

Proof

Step Hyp Ref Expression
1 sltmul12ad.1 φ A No
2 sltmul12ad.2 φ B No
3 sltmul12ad.3 φ C No
4 sltmul12ad.4 φ D No
5 sltmul12ad.5 Could not format ( ph -> 0s <_s A ) : No typesetting found for |- ( ph -> 0s <_s A ) with typecode |-
6 sltmul12ad.6 φ A < s B
7 sltmul12ad.7 Could not format ( ph -> 0s <_s C ) : No typesetting found for |- ( ph -> 0s <_s C ) with typecode |-
8 sltmul12ad.8 φ C < s D
9 1 3 mulscld Could not format ( ph -> ( A x.s C ) e. No ) : No typesetting found for |- ( ph -> ( A x.s C ) e. No ) with typecode |-
10 2 3 mulscld Could not format ( ph -> ( B x.s C ) e. No ) : No typesetting found for |- ( ph -> ( B x.s C ) e. No ) with typecode |-
11 2 4 mulscld Could not format ( ph -> ( B x.s D ) e. No ) : No typesetting found for |- ( ph -> ( B x.s D ) e. No ) with typecode |-
12 1 2 6 sltled φ A s B
13 1 2 3 7 12 slemul1ad Could not format ( ph -> ( A x.s C ) <_s ( B x.s C ) ) : No typesetting found for |- ( ph -> ( A x.s C ) <_s ( B x.s C ) ) with typecode |-
14 0sno Could not format 0s e. No : No typesetting found for |- 0s e. No with typecode |-
15 14 a1i Could not format ( ph -> 0s e. No ) : No typesetting found for |- ( ph -> 0s e. No ) with typecode |-
16 15 1 2 5 6 slelttrd Could not format ( ph -> 0s 0s
17 3 4 2 16 sltmul2d Could not format ( ph -> ( C ( B x.s C ) ( C ( B x.s C )
18 8 17 mpbid Could not format ( ph -> ( B x.s C ) ( B x.s C )
19 9 10 11 13 18 slelttrd Could not format ( ph -> ( A x.s C ) ( A x.s C )