Metamath Proof Explorer


Theorem sltmul12ad

Description: Comparison of the product of two positive surreals. (Contributed by Scott Fenton, 17-Apr-2025)

Ref Expression
Hypotheses sltmul12ad.1 φ A No
sltmul12ad.2 φ B No
sltmul12ad.3 φ C No
sltmul12ad.4 φ D No
sltmul12ad.5 φ 0 s s A
sltmul12ad.6 φ A < s B
sltmul12ad.7 φ 0 s s C
sltmul12ad.8 φ C < s D
Assertion sltmul12ad φ A s C < s B s D

Proof

Step Hyp Ref Expression
1 sltmul12ad.1 φ A No
2 sltmul12ad.2 φ B No
3 sltmul12ad.3 φ C No
4 sltmul12ad.4 φ D No
5 sltmul12ad.5 φ 0 s s A
6 sltmul12ad.6 φ A < s B
7 sltmul12ad.7 φ 0 s s C
8 sltmul12ad.8 φ C < s D
9 1 3 mulscld φ A s C No
10 2 3 mulscld φ B s C No
11 2 4 mulscld φ B s D No
12 1 2 6 sltled φ A s B
13 1 2 3 7 12 slemul1ad φ A s C s B s C
14 0sno 0 s No
15 14 a1i φ 0 s No
16 15 1 2 5 6 slelttrd φ 0 s < s B
17 3 4 2 16 sltmul2d φ C < s D B s C < s B s D
18 8 17 mpbid φ B s C < s B s D
19 9 10 11 13 18 slelttrd φ A s C < s B s D