Metamath Proof Explorer


Theorem sltmul1d

Description: Multiplication of both sides of surreal less-than by a positive number. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses sltmul12d.1 φ A No
sltmul12d.2 φ B No
sltmul12d.3 φ C No
sltmul12d.4 φ 0 s < s C
Assertion sltmul1d φ A < s B A s C < s B s C

Proof

Step Hyp Ref Expression
1 sltmul12d.1 φ A No
2 sltmul12d.2 φ B No
3 sltmul12d.3 φ C No
4 sltmul12d.4 φ 0 s < s C
5 1 2 3 4 sltmul2d φ A < s B C s A < s C s B
6 1 3 mulscomd φ A s C = C s A
7 2 3 mulscomd φ B s C = C s B
8 6 7 breq12d φ A s C < s B s C C s A < s C s B
9 5 8 bitr4d φ A < s B A s C < s B s C