Metamath Proof Explorer


Theorem sltmul2

Description: Multiplication of both sides of surreal less-than by a positive number. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Assertion sltmul2 A No 0 s < s A B No C No B < s C A s B < s A s C

Proof

Step Hyp Ref Expression
1 simpl1l A No 0 s < s A B No C No B < s C A No
2 simpl3 A No 0 s < s A B No C No B < s C C No
3 simpl2 A No 0 s < s A B No C No B < s C B No
4 2 3 subscld A No 0 s < s A B No C No B < s C C - s B No
5 simpl1r A No 0 s < s A B No C No B < s C 0 s < s A
6 simp2 A No 0 s < s A B No C No B No
7 simp3 A No 0 s < s A B No C No C No
8 6 7 posdifsd A No 0 s < s A B No C No B < s C 0 s < s C - s B
9 8 biimpa A No 0 s < s A B No C No B < s C 0 s < s C - s B
10 1 4 5 9 mulsgt0d A No 0 s < s A B No C No B < s C 0 s < s A s C - s B
11 1 2 3 subsdid A No 0 s < s A B No C No B < s C A s C - s B = A s C - s A s B
12 10 11 breqtrd A No 0 s < s A B No C No B < s C 0 s < s A s C - s A s B
13 1 3 mulscld A No 0 s < s A B No C No B < s C A s B No
14 1 2 mulscld A No 0 s < s A B No C No B < s C A s C No
15 13 14 posdifsd A No 0 s < s A B No C No B < s C A s B < s A s C 0 s < s A s C - s A s B
16 12 15 mpbird A No 0 s < s A B No C No B < s C A s B < s A s C
17 simp1l A No 0 s < s A B No C No A No
18 17 7 mulscld A No 0 s < s A B No C No A s C No
19 sltirr A s C No ¬ A s C < s A s C
20 18 19 syl A No 0 s < s A B No C No ¬ A s C < s A s C
21 oveq2 B = C A s B = A s C
22 21 breq1d B = C A s B < s A s C A s C < s A s C
23 22 notbid B = C ¬ A s B < s A s C ¬ A s C < s A s C
24 20 23 syl5ibrcom A No 0 s < s A B No C No B = C ¬ A s B < s A s C
25 24 con2d A No 0 s < s A B No C No A s B < s A s C ¬ B = C
26 25 imp A No 0 s < s A B No C No A s B < s A s C ¬ B = C
27 17 6 mulscld A No 0 s < s A B No C No A s B No
28 sltasym A s B No A s C No A s B < s A s C ¬ A s C < s A s B
29 27 18 28 syl2anc A No 0 s < s A B No C No A s B < s A s C ¬ A s C < s A s B
30 29 imp A No 0 s < s A B No C No A s B < s A s C ¬ A s C < s A s B
31 simpl1l A No 0 s < s A B No C No A s B < s A s C A No
32 31 adantr A No 0 s < s A B No C No A s B < s A s C 0 s < s B - s C A No
33 simpll2 A No 0 s < s A B No C No A s B < s A s C 0 s < s B - s C B No
34 simpll3 A No 0 s < s A B No C No A s B < s A s C 0 s < s B - s C C No
35 33 34 subscld A No 0 s < s A B No C No A s B < s A s C 0 s < s B - s C B - s C No
36 simpl1r A No 0 s < s A B No C No A s B < s A s C 0 s < s A
37 36 adantr A No 0 s < s A B No C No A s B < s A s C 0 s < s B - s C 0 s < s A
38 simpr A No 0 s < s A B No C No A s B < s A s C 0 s < s B - s C 0 s < s B - s C
39 32 35 37 38 mulsgt0d A No 0 s < s A B No C No A s B < s A s C 0 s < s B - s C 0 s < s A s B - s C
40 32 33 34 subsdid A No 0 s < s A B No C No A s B < s A s C 0 s < s B - s C A s B - s C = A s B - s A s C
41 40 breq2d A No 0 s < s A B No C No A s B < s A s C 0 s < s B - s C 0 s < s A s B - s C 0 s < s A s B - s A s C
42 18 ad2antrr A No 0 s < s A B No C No A s B < s A s C 0 s < s B - s C A s C No
43 27 ad2antrr A No 0 s < s A B No C No A s B < s A s C 0 s < s B - s C A s B No
44 42 43 posdifsd A No 0 s < s A B No C No A s B < s A s C 0 s < s B - s C A s C < s A s B 0 s < s A s B - s A s C
45 41 44 bitr4d A No 0 s < s A B No C No A s B < s A s C 0 s < s B - s C 0 s < s A s B - s C A s C < s A s B
46 39 45 mpbid A No 0 s < s A B No C No A s B < s A s C 0 s < s B - s C A s C < s A s B
47 30 46 mtand A No 0 s < s A B No C No A s B < s A s C ¬ 0 s < s B - s C
48 simpl3 A No 0 s < s A B No C No A s B < s A s C C No
49 simpl2 A No 0 s < s A B No C No A s B < s A s C B No
50 48 49 posdifsd A No 0 s < s A B No C No A s B < s A s C C < s B 0 s < s B - s C
51 47 50 mtbird A No 0 s < s A B No C No A s B < s A s C ¬ C < s B
52 sltlin B No C No B < s C B = C C < s B
53 49 48 52 syl2anc A No 0 s < s A B No C No A s B < s A s C B < s C B = C C < s B
54 26 51 53 ecase23d A No 0 s < s A B No C No A s B < s A s C B < s C
55 16 54 impbida A No 0 s < s A B No C No B < s C A s B < s A s C