Metamath Proof Explorer


Theorem sltmul2d

Description: Multiplication of both sides of surreal less-than by a positive number. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses sltmul12d.1 φ A No
sltmul12d.2 φ B No
sltmul12d.3 φ C No
sltmul12d.4 φ 0 s < s C
Assertion sltmul2d φ A < s B C s A < s C s B

Proof

Step Hyp Ref Expression
1 sltmul12d.1 φ A No
2 sltmul12d.2 φ B No
3 sltmul12d.3 φ C No
4 sltmul12d.4 φ 0 s < s C
5 sltmul2 C No 0 s < s C A No B No A < s B C s A < s C s B
6 3 4 1 2 5 syl211anc φ A < s B C s A < s C s B