Metamath Proof Explorer


Theorem sltmuldiv2wd

Description: Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025)

Ref Expression
Hypotheses sltdivmulwd.1 φ A No
sltdivmulwd.2 φ B No
sltdivmulwd.3 φ C No
sltdivmulwd.4 φ 0 s < s C
sltdivmulwd.5 φ x No C s x = 1 s
Assertion sltmuldiv2wd φ C s A < s B A < s B / su C

Proof

Step Hyp Ref Expression
1 sltdivmulwd.1 φ A No
2 sltdivmulwd.2 φ B No
3 sltdivmulwd.3 φ C No
4 sltdivmulwd.4 φ 0 s < s C
5 sltdivmulwd.5 φ x No C s x = 1 s
6 1 3 mulscomd φ A s C = C s A
7 6 breq1d φ A s C < s B C s A < s B
8 1 2 3 4 5 sltmuldivwd φ A s C < s B A < s B / su C
9 7 8 bitr3d φ C s A < s B A < s B / su C