Metamath Proof Explorer


Theorem sltmuldivwd

Description: Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025)

Ref Expression
Hypotheses sltdivmulwd.1 φ A No
sltdivmulwd.2 φ B No
sltdivmulwd.3 φ C No
sltdivmulwd.4 φ 0 s < s C
sltdivmulwd.5 φ x No C s x = 1 s
Assertion sltmuldivwd φ A s C < s B A < s B / su C

Proof

Step Hyp Ref Expression
1 sltdivmulwd.1 φ A No
2 sltdivmulwd.2 φ B No
3 sltdivmulwd.3 φ C No
4 sltdivmulwd.4 φ 0 s < s C
5 sltdivmulwd.5 φ x No C s x = 1 s
6 4 sgt0ne0d φ C 0 s
7 2 3 6 5 divsclwd φ B / su C No
8 1 7 3 4 sltmul1d φ A < s B / su C A s C < s B / su C s C
9 2 3 6 5 divscan1wd φ B / su C s C = B
10 9 breq2d φ A s C < s B / su C s C A s C < s B
11 8 10 bitr2d φ A s C < s B A < s B / su C