Metamath Proof Explorer


Theorem sltmulneg1d

Description: Multiplication of both sides of surreal less-than by a negative number. (Contributed by Scott Fenton, 14-Mar-2025)

Ref Expression
Hypotheses sltmulneg.1 φ A No
sltmulneg.2 φ B No
sltmulneg.3 φ C No
sltmulneg.4 φ C < s 0 s
Assertion sltmulneg1d φ A < s B B s C < s A s C

Proof

Step Hyp Ref Expression
1 sltmulneg.1 φ A No
2 sltmulneg.2 φ B No
3 sltmulneg.3 φ C No
4 sltmulneg.4 φ C < s 0 s
5 1 3 mulnegs2d φ A s + s C = + s A s C
6 2 3 mulnegs2d φ B s + s C = + s B s C
7 5 6 breq12d φ A s + s C < s B s + s C + s A s C < s + s B s C
8 3 negscld φ + s C No
9 negs0s + s 0 s = 0 s
10 0sno 0 s No
11 10 a1i φ 0 s No
12 3 11 sltnegd φ C < s 0 s + s 0 s < s + s C
13 4 12 mpbid φ + s 0 s < s + s C
14 9 13 eqbrtrrid φ 0 s < s + s C
15 1 2 8 14 sltmul1d φ A < s B A s + s C < s B s + s C
16 2 3 mulscld φ B s C No
17 1 3 mulscld φ A s C No
18 16 17 sltnegd φ B s C < s A s C + s A s C < s + s B s C
19 7 15 18 3bitr4d φ A < s B B s C < s A s C